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7.1 INTRODUCTION
In this chapter, the Galerkin method introduced in Chapter 5 and the interpola-
tion function concepts of Chapter 6 are applied to several heat transfer
situations. Conduction with convection is discussed for one-, two-, and three-
dimensional problems. Boundary conditions and forcing functions include
prescribed heat flux, insulated surfaces, prescribed temperatures, and convec-
tion. The one-dimensional case of heat transfer with mass transport is also
developed. The three-dimensional case of axial symmetry is developed in detail
using appropriately modified two-dimensional elements and interpolation
functions. Heat transfer by radiation is not discussed, owing to the nonlinear
nature of radiation effects. However, we examine transient heat transfer and
include an introduction to finite difference techniques for solution of transient
problems.

7.2 ONE-DIMENSIONAL CONDUCTION:
QUADRATIC ELEMENT

Chapter 5 introduced the concept of one-dimensional heat conduction via the
Galerkin finite element method. In the examples of Chapter 5, linear, two-node
finite elements are used to illustrate the concepts involved. Given the develop-
ment of the general interpolation concepts in Chapter 6, we now apply a higher-
order (quadratic) element to a previous example to demonstrate that (1) the basic
procedure of element formulation is unchanged, (2) the system assembly proce-
dure is unchanged, and (3) the results are quite similar.

7 C H A P T E R



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

7.2 One-Dimensional Conduction: Quadratic Element 223

(a)

kal �200 W/m-� C kcu �389 W/m-� C

0.5 m 0.5 m

Alqin Cu 80� C

Insulated

Figure 7.1
(a) Geometry and data for Example 7.1, outside diameter = 60 mm,
qin = 4000 W/m2. (b) Two-element model, using quadratic elements.

(b)

1 2
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Solve Example 5.4 using two, three-node line elements with equally spaced nodes. The
problem and numerical data are repeated here as Figure 7.1a. 

■ Solution
Per Equation 5.62, the element equations are

kx ANi (x )
dT

dx

∣
∣
∣
∣

x2

x1

− kx A

x2∫

x1

dNi

dx

dT

dx
dx + A

x2∫

x1

Q Ni (x ) dx = 0 i = 1, 3

where now there are three interpolation functions per element.
The interpolation functions for a three-node line element are, per Equations 6.23–

6.25

N1(s) = 2

(

s − 1

2

)

(s − 1)

N2(s) = −4s(s − 1)

N3(s) = 2s

(

s − 1

2

)

The components of the conductance matrix are then calculated as

ki j = kx A

x2∫

x1

dNi

dx

dNj

dx
dx i, j = 1, 3

and the heat generation vector components are

f Qi = A

x2∫

x1

Q Ni dx i = 1, 3

and all f Q components are zero in this example, as there is no internal heat source.

EXAMPLE 7.1
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In terms of the dimensionless coordinate s = x/L , we have dx = Lds and d/dx =
(1/L ) d/ds, so the terms of the conductance matrix are expressed as

ki j = kx A

L

1∫

0

dNi

ds

dNj

ds
ds i, j = 1, 3

The derivatives of the interpolation functions are

dN1

ds
= 4s − 3

dN2

ds
= 4(1 − 2s)

dN3

ds
= 4s − 1

Therefore, on substitution for the derivatives,

k11 = kx A

L

1∫

0

(4s − 3)2 ds = kx A

L

1∫

0

(16s2 − 24s + 9) ds

= kx A

L

(
16s3

3
− 12s2 + 9s

)1

0

= 7kx A

3L

Via mathematically identical procedures, the remaining terms of the conductance matrix
are found to be

k12 = k21 = − 8kx A

3L

k13 = k31 = kx A

3L

k22 = 16kx A

3L

k23 = k32 = − 8kx A

3L

k33 = 7kx A

3L

A two-element model with node numbers is shown in Figure 7.1b. Substituting
numerical values, we obtain, for the aluminum half of the rod (element 1),

[

k(1)
] = 200(�/4)(0.006)2

3(0.5)





7 −8 1
−8 16 −8
1 −8 7



 =




2.6389 −3.0159 0.3770
−3.0159 6.0319 −3.0159
0.3770 −3.0159 2.6389




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and for the copper portion (element 2),

[

k(2)
] = 389(�/4)(0.006)2

3(0.5)





7 −8 1
−8 16 −8
1 −8 7



 =




5.1327 −5.8660 0.7332
−5.8660 11.7320 −5.8660
0.7332 −5.8660 5.1327





At the internal nodes of each element, the flux terms are zero, owing to the nature of the
interpolation functions [N2(x1) = N2(x2) = 0]. Similarly, at the junction between the
two elements, the flux must be continuous and the equivalent “forcing” functions are
zero. As no internal heat is generated, Q = 0, that portion of the force vector is zero for
each element. Following the direct assembly procedure, the system conductance matrix
is found to be

[K ] =









2.6389 −3.0159 0.3770 0 0
−3.0159 6.0319 −3.0159 0 0
0.3770 −3.0159 7.7716 −5.8660 0.7332

0 0 −5.8660 11.7320 −5.8660
0 0 0.7332 −5.8660 5.1327









W/◦C

and we note in particular that “overlap” exists only at the juncture between elements. The
gradient term at node 1 is computed as

fg1 = − kx A
dT

dx

∣
∣
∣
∣

x1

= q1 A = 4000

(
�

4

)

(0.06)2 = 11.3097 W

while the heat flux at node 5 is an unknown to be calculated via the system equations.
The system equations are given by











2.6389 −3.0159 0.3770 0 0

−3.0159 6.0319 −3.0159 0 0

0.3770 −3.0159 7.7716 −5.8660 0.7332

0 0 −5.8660 11.7320 −5.8660

0 0 0.7332 −5.8660 5.1327

















T1

T2

T3

T4

80







=







11.3097

0

0

0

−Aq5







Prior to solving for the unknown nodal temperatures T1–T4 , the nonhomogeneous bound-
ary condition T5 = 80◦C must be accounted for properly. In this case, we reduce the sys-
tem of equations to 4 × 4 by transposing the last term of the third and fourth equations
to the right-hand side to obtain







2.3689 −3.0159 0.3770 0
−3.0159 6.0319 −3.0159 0
0.3770 −3.0159 7.7716 −5.8660

0 0 −5.8660 11.7320













T1

T2

T3

T4







=







11.3907
0

−0.7332(80)
5.8660(80)







=







11.3097
0

−58.6560
489.2800






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EXAMPLE 7.2

Solving the equations by Gaussian elimination (Appendix C), the nodal tempera-
tures are

T1 = 95.11◦C

T2 = 90.14◦C

T3 = 85.14◦C

T4 = 82.57◦C

and the heat flux at node 5 is calculated using the fifth equation

−Aq5 = 0.7332 T3 − 5.8660 T4 + 5.1327(80)

to obtain

q5 = 4001 .9 W/m2

which is observed to be in quite reasonable numerical agreement with the heat input at
node 1.

The solution for the nodal temperatures in this example is identical for both
the linear and quadratic interpolation functions. In fact, the solution we obtained
is the exact solution (Problem 7.1) represented by a linear temperature distribu-
tion in each half of the bar. It can be shown [1] that, if an exact solution exists
and the interpolation functions used in the finite element formulation include the
terms appearing in the exact solution, then the finite element solution corre-
sponds to the exact solution. In this example, the quadratic interpolation func-
tions include the linear terms in addition to the quadratic terms and thus capture
the exact, linear solution. The following example illustrates this feature in terms
of the field variable representation.

For the quadratic field variable representation 

�(x ) = a0 + a1 x + a2 x 2

determine the explicit form of the coefficients a0 , a1 , a2 in terms of the nodal variables if
the three nodes are equally spaced. Then use the results of Example 7.1 to show a2 = 0
for that example.

■ Solution
Using the interpolation functions from Example 7.1, we can write the field variable
representation in terms of the dimensionless variable s as

�(s) = (2s2 − 3s + 1)�1 + 4(s − s2)�2 + (2s2 − s)�3

Collecting coefficients of similar powers of s,

�(s) = �1 + (4�2 − 3�1 − �3)s + (2�1 − 4�2 + 2�3)s2



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

7.3 One-Dimensional Conduction with Convection 227

Therefore,

a0 = �1

a1 = 4�2 − 3�1 − �3

a2 = 2�1 − 4�2 + 2�3

Using the temperature results of Example 7.1 for the aluminum element, we have

�1 = T1 = 95.14

�2 = T2 = 90.14

�3 = T3 = 85.14

a2 = 2(95.14) − 4(90.14) + 2(85.14) = 0

For element 2, representing the copper portion of the bar, the same result is obtained.

7.3 ONE-DIMENSIONAL CONDUCTION
WITH CONVECTION

One-dimensional heat conduction, in which no heat flows from the surface of the
body under consideration (as in Figure 5.8), is not commonly encountered. A
more practical situation exists when the body is surrounded by a fluid medium
and heat flow occurs from the surface to the fluid via convection. Figure 7.2a
shows a solid body, which we use to develop a one-dimensional model of heat
transfer including both conduction and convection. Note that the representation
is the same as in Figure 5.8 with the very important exception that the assump-
tion of an insulated surface is removed. Instead, the body is assumed to be sur-
rounded by a fluid medium to which heat is transferred by convection. If the fluid
is in motion as a result of some external influence (a fan or pump, for example),
the convective heat transfer is referred to as forced convection. On the other
hand, if motion of the fluid exists only as a result of the heat transfer taking place,
we have natural convection. Figure 7.2b depicts a control volume of differential
length, which is assumed to have a constant cross-sectional area and uniform

qout

Ta
Convection

qin

(a)

Figure 7.2 One-dimensional conduction with surface convection.
(a) General model. (b) Differential element as a control volume.

qx

dx

qh

Q
�U qx � dx

dqx

dx

(b)
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material properties. The convective heat transfer across the surface, denoted qh ,
represents the heat flow rate (heat flux) across the surface per unit surface area.
To apply the principle of conservation of energy to the control volume, we need
only add the convection term to Equation 5.54 to obtain

qx A dt + Q A dx dt = �U +
(

qx + ∂qx

∂x
dx

)

A dt + qh P dx dt (7.1)

where all terms are as previously defined except that P is the peripheral dimen-
sion of the differential element and qh is the heat flux due to convection. The con-
vective heat flux is given by [2]

qh = h(T − Ta) (7.2)

where
h = convection coefficient, W/(m2-◦C), Btu/(hr-ft2-◦F)
T = temperature of surface of the body
Ta = ambient fluid temperature

Substituting for qh and assuming steady-state conditions such that �U = 0,
Equation 7.1 becomes

Q A = A
dqx

dx
+ h P (T − Ta) (7.3)

which, via Fourier’s law Equation 5.55, becomes

kx
d2T

dx 2
+ Q = h P

A
(T − Ta) (7.4)

where we have assumed kx to be constant.
While Equation 7.4 represents the one-dimensional formulation of conduc-

tion with convection, note that the temperature at any position x along the length
of the body is not truly constant, owing to convection. Nevertheless, if the cross-
sectional area is small relative to the length, the one-dimensional model can give
useful results if we recognize that the computed temperatures represent average
values over a cross section.

7.3.1 Finite Element Formulation

To develop the finite element equations, a two-node linear element for which

T (x ) = N1(x )T1 + N2(x )T2 (7.5)

is used in conjunction with Galerkin’s method. For Equation 7.4, the residual
equations (in analogy with Equation 5.61) are expressed as

x2∫

x1

[

kx
d2T

dx 2
+ Q − h P

A
(T − Ta)

]

Ni (x ) A dx = 0 i = 1, 2 (7.6)
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or

A

x2∫

x1

kx
d2T

dx 2
Ni (x ) dx − h P

x2∫

x1

T (x ) Ni (x ) dx + A

x2∫

x1

Q N i (x ) dx

+ h P T a

x2∫

x1

Ni (x ) dx = 0 i = 1, 2 (7.7)

Integrating the first term by parts and rearranging,

kx A

x2∫

x1

dNi

dx

dT

dx
dx + h P

x2∫

x1

T (x ) Ni (x ) dx

= A

x2∫

x1

Q N i (x ) dx + h P T a

x2∫

x1

Ni (x ) dx + kx ANi (x )
dT

dx

∣
∣
∣
∣

x2

x1

i = 1, 2

(7.8)

Substituting for T (x ) from Equation 7.5 yields

kx A

x2∫

x1

dNi

dx

(
dN1

dx
T1 + dN2

dx
T2

)

dx + h P

x2∫

x1

Ni (x )[N1(x )T1 + N2(x )T2] dx

= A

x2∫

x1

Q N i (x ) dx + h P T a

x2∫

x1

Ni (x ) dx + kx ANi (x )
dT

dx

∣
∣
∣
∣

x2

x1

i = 1, 2

(7.9)

The two equations represented by Equation 7.9 are conveniently combined into
a matrix form by rewriting Equation 7.5 as

T (x ) = [N1 N2]

{

T1

T2

}

= [N ]{T } (7.10)

and substituting to obtain

kx A

x2∫

x1

[
dN

dx

]T [
dN

dx

]

{T } dx + h P

x2∫

x1

[N ]T [N ]{T } dx

= A

x2∫

x1

Q[N ]T dx + h P T a

x2∫

x1

[N ]T dx + kx A [N ]T dT

dx

∣
∣
∣
∣

x2

x1

(7.11)

Equation 7.11 is in the desired finite element form:
[

k (e)
] {T } = {

f (e)
Q

} + {

f (e)
h

} + {

f (e)
g

}

(7.12)
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where [k (e)] is the conductance matrix defined as

[

k (e)
] = kx A

x2∫

x1

[
dN

dx

]T [
dN

dx

]

dx + h P

x2∫

x1

[N ]T [N ] dx (7.13)

The first integral is identical to that in Equation 5.66, representing the axial con-
duction effect, while the second integral accounts for convection.

Without loss of generality, we let x1 = 0, x2 = L so that the interpolation
functions are

N1 = 1 − x

L

N2 = x

L

(7.14)

The results of the first integral are as given in Equation 5.68, so we need perform
only the integrations indicated in the second term (Problem 7.2) to obtain

[

k (e)
] = kx A

L

[

1 −1
−1 1

]

+ h P L

6

[

2 1
1 2

]

= [

k (e)
c

] + [

k (e)
h

]

(7.15)

where [k (e)
c ] and [k (e)

h ] represent the conductive and convective portions of the
matrix, respectively. Note particularly that both portions are symmetric.

The forcing function vectors on the right-hand side of Equation 7.12 include
the internal heat generation and boundary flux terms, as in Chapter 5. These are
given by

{

f (e)
Q

} = A







L∫

0
QN 1 dx

L∫

0
QN 2 dx







(7.16)

{

f (e)
g

} = kx A







−dT

dx

∣
∣
∣
∣
0

dT

dx

∣
∣
∣
∣

L







= A

{

qx=0

−qx=L

}

= A

{

q1

−q2

}

(7.17)

where q1 and q2 are the boundary flux values at nodes 1 and 2, respectively. In
addition, the forcing function arising from convection is

{

f (e)
h

} = h PT a







1∫

0
N1 dx

1∫

0
N2 dx







= h PT a L

2

{

1
1

}

(7.18)

where it is evident that the total element convection force is simply allocated
equally to each node, like constant internal heat generation Q.
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7.3.2 Boundary Conditions

In the one-dimensional case of heat transfer under consideration, two boundary
conditions must be specified. Typically, this means that, if the finite element
model of the problem is composed of M elements, one boundary condition is
imposed at node 1 of element 1 and the second boundary condition is imposed at
node 2 of element M. The boundary conditions are of three types:

1. Imposed temperature. The temperature at an end node is a known value;
this condition occurs when an end of the body is subjected to a constant
process temperature and heat is removed from the process by the body.

2. Imposed heat flux. The heat flow rate into, or out of, an end of the body is
specified; while distinctly possible in a mathematical sense, this type of
boundary condition is not often encountered in practice.

3. Convection through an end node. In this case, the end of the body is in
contact with a fluid of known ambient temperature and the conduction flux
at the boundary is removed via convection to the fluid media. Assuming
that this condition applies at node 2 of element M of the finite element
model, as in Figure 7.3, the convection boundary condition is expressed as

kx
dT

dx

∣
∣
∣
∣

M+1

= −qM+1 = −h(TM+1 − Ta) (7.19)

indicating that the conduction heat flux at the end node must be carried
away by convection at that node. The area for convection in Equation 7.19
is the cross-sectional area of element M; as this area is common to each of
the three terms in the equation, the area has been omitted. An explanation
of the algebraic signs in Equation 7.19 is appropriate here. If TM+1 > Ta ,
the temperature gradient is negative (given the positive direction of the x
axis as shown); therefore, the flux and convection are positive terms.
The following example illustrates application of the one-dimensional
conduction/convection problem.

Figure 7.4a depicts a cylindrical pin that is one of several in a small heat exchange device.
The left end of the pin is subjected to a constant temperature of 180◦F. The right end of
the pin is in contact with a chilled water bath maintained at constant temperature of 40◦F.

EXAMPLE 7.3

M�31

BC1

x

BC2

Convection
2 3 4 M�2 M�1 M M�1

Figure 7.3 Convection boundary condition at node M + 1 of an M-element,
one-dimensional heat transfer finite element model.
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(a)

4 in.

72� F

40� F180� F

Figure 7.4 Example 7.3: (a) Cylindrical pin.
(b) Finite element model.

(b)

1 5432

T �180�F
q�h(T5� 40)1 2 3 4

The exterior surface of the pin is in contact with moving air at 72◦F. The physical data are
given as follows:

D = 0.5 in., L = 4 in., kx = 120 Btu/(hr-ft-◦F),

hair = 50 Btu/(hr-ft2-◦F), hwater = 100 Btu/(hr-ft2-◦F)

Use four equal-length, two-node elements to obtain a finite element solution for the
temperature distribution across the length of the pin and the heat flow rate through the pin.

■ Solution
Figure 7.4b shows the elements, node numbers, and boundary conditions. The boundary
conditions are expressed as follows

At node 1: T1 = 180◦F

At node 5: kx
dT

dx

∣
∣
∣
∣

5

= −q5 = −h(T5 − 40)

Element geometric data is then

L e = 1 in., P = �(0.5) = 1.5708 in., A = (�/4)(0.5)2 = 0.1963 in.2

The leading coefficients of the conductance matrix terms are

kx A

L e
=

120

(
0.1963

144

)

1

12

= 1.9630 Btu/(hr-◦F)

hair PLe

6
=

50

(
1.5708

12

)(
1

12

)

6
= 0.0909 Btu/(hr-◦F)

where conversion from inches to feet is to be noted.
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Substituting into Equation 7.15, the element conductance matrix is

[

k (e)
] = 1.9630

[

1 −1
−1 1

]

+ 0.0909

[

2 1
1 2

]

=
[

2.1448 −1.8721
−1.8721 2.1448

]

Following the direct assembly procedure, the system conductance matrix is

[K ] =









2.1448 −1.8721 0 0 0
−1.8721 4.2896 −1.8721 0 0

0 −1.8721 4.2896 −1.8721 0
0 0 −1.8721 4.2896 −1.8721
0 0 0 −1.8721 2.1448









As no internal heat is generated, f Q = 0. The element convection force components per
Equation 7.18 are

{

f (e)
h

} = h P T a L

2

{

1
1

}

=
50

(
1.5708

12

)

(72)

(
1

12

)

2
=

{

19.6375
19.6375

}

Btu/hr

Assembling the contributions of each element at the nodes gives the system convection
force vector as

{Fh } =







19.6375
39.2750
39.2750
39.2750
19.6375







Btu/hr

Noting the cancellation of terms at nodal connections, the system gradient vector
becomes simply

{Fg} =







Aq1

0
0
0

−Aq5







=







Aq1

0
0
0

−Ahwater (T5 − 40)







=







Aq1

0
0
0

−0.1364T5 + 5.4542







Btu/hr

and the boundary condition at the pin-water interface has been explicitly incorporated.
Note that, as a result of the convection boundary condition, a term containing unknown
nodal temperature T5 appears in the gradient vector. This term is transposed in the final
equations and results in a increase in value of the K55 term of the system matrix. The final
assembled equations are









2.1448 −1.8721 0 0 0
−1.8721 4.2896 −1.8721 0 0

0 −1.8721 4.2896 −1.8721 0
0 0 −1.8721 4.2896 −1.8721
0 0 0 −1.8721 2.2812















180
T2

T3

T4

T5







=







19.6375 + Aq1

39.2750
39.2750
39.2750
25.0917






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Eliminating the first equation while taking care to include the effect of the specified tem-
perature at node 1 on the remaining equations gives







4.2896 −1.8571 0 0
−1.8721 4.2896 −1.8721 0

0 −1.8721 4.2896 −1.8721
0 0 −1.8721 2.2812













T2

T3

T4

T5







=







376.2530
39.2750
39.2750
25.0917







Solving by Gaussian elimination, the nodal temperatures are obtained as

T2 = 136.16◦F

T3 = 111.02◦F

T4 = 97.23◦F

T5 = 90.79◦F

The heat flux at node 1 is computed by back substitution of T2 into the first equation:

2.1448(180) − 1.8721(136.16) = 19.6375 + Aq1

Aq1 = 111.5156 Btu/hr

q1 = 111.5156

0.1963/144
≈ 81,805 Btu/hr-ft2

Although the pin length in this example is quite small, use of only four elements rep-
resents a coarse element mesh. To illustrate the effect, recall that, for the linear, two-node
element the first derivative of the field variable, in this case, the temperature gradient, is
constant; that is,

dT

dx
= �T

�x
= �T

L e

Using the computed nodal temperatures, the element gradients are

Element 1:
dT

dx
= 136.16 − 180

1
= −43.84

◦F

in.

Element 2:
dT

dx
= 111.02 − 136.16

1
= −25.14

◦F

in.

Element 3:
dT

dx
= 97.23 − 111.02

1
= −13.79

◦F

in.

Element 4:
dT

dx
= 90.79 − 97.23

1
= −6.44

◦F

in.

where the length is expressed in inches for numerical convenience. The computed gradi-
ent values show significant discontinuities at the nodal connections. As the number of
elements is increased, the magnitude of such jump discontinuities in the gradient values
decrease significantly as the finite element approximation approaches the true solution.
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Table 7.1 Nodal Temperature Solutions

Four Elements, Eight Elements,
x (inches) T (◦F) T (◦F)

0 180 180
0.5 158.08* 155.31
1.0 136.16 136.48
1.5 123.59* 122.19
2.0 111.02 111.41
2.5 104.13* 103.41
3.0 97.23 97.62
3.5 94.01* 93.63
4.0 90.79 91.16

To illustrate convergence as well as the effect on gradient values, an eight-element solu-
tion was obtained for this problem. Table 7.1 shows the nodal temperature solutions for
both four- and eight-element models. Note that, in the table, values indicated by * are
interpolated, nonnodal values.

7.4 HEAT TRANSFER IN TWO DIMENSIONS
A case in which heat transfer can be considered to be adequately described by a
two-dimensional formulation is shown in Figure 7.5. The rectangular fin has
dimensions a × b × t , and thickness t is assumed small in comparison to a and
b. One edge of the fin is subjected to a known temperature while the other three
edges and the faces of the fin are in contact with a fluid. Heat transfer then occurs
from the core via conduction through the fin to its edges and faces, where con-
vection takes place. The situation depicted could represent a cooling fin remov-
ing heat from some process or a heating fin moving heat from an energy source
to a building space.

To develop the governing equations, we refer to a differential element of a
solid body that has a small dimension in the z direction, as in Figure 7.6, and
examine the principle of conservation of energy for the differential element. As
we now deal with two dimensions, all derivatives are partial derivatives. Again,
on the edges x + dx and y + dy , the heat flux terms have been expanded in first-
order Taylor series. We assume that the differential element depicted is in the
interior of the body, so that convection occurs only at the surfaces of the element
and not along the edges. Applying Equation 5.53 under the assumption of steady-
state conditions (i.e., �U = 0), we obtain

qx t dy + qyt dx + Qt dy dx =
(

qx + ∂qx

∂x
dx

)

t dy +
(

qy + ∂qy

∂y
dy

)

t dx

+ 2h(T − Ta) dy dx (7.20)
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where
t = thickness
h = the convection coefficient from the surfaces of the differential element

Ta = the ambient temperature of the surrounding fluid

Utilizing Fourier’s law in the coordinate directions

qx = −kx
∂T

∂x

qy = −ky
∂T

∂y

(7.21)

then substituting and simplifying yields

Qt dy dx = ∂

∂x

(

−kx
∂T

∂x

)

t dy dx + ∂

∂y

(

−ky
∂T

∂y

)

t dy dx + 2h(T − Ta) dy dx

(7.22)

where kx and ky are the thermal conductivities in the x and y directions, respec-
tively. Equation 7.22 simplifies to

∂

∂x

(

tkx
∂T

∂x

)

+ ∂

∂y

(

tky
∂T

∂y

)

+ Qt = 2h(T − Ta) (7.23)

Equation 7.23 is the governing equation for two-dimensional conduction with
convection from the surfaces of the body. Convection from the edges is also
possible, as is subsequently discussed in terms of the boundary conditions.

7.4.1 Finite Element Formulation

In developing a finite element approach to two-dimensional conduction with
convection, we take a general approach initially; that is, a specific element geom-
etry is not used. Instead, we assume a two-dimensional element having M nodes

t
a

b

qh

qh

qhT

Figure 7.5 Two-dimensional
conduction fin with face and
edge convection.

qx

dy

dx

Q, �U

qy
h(T �Ta)

qy � dy
�qy

�y

qx � dx
�qx

�x

Figure 7.6 Differential element depicting
two-dimensional conduction with surface
convection.
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such that the temperature distribution in the element is described by

T (x , y) =
M∑

i=1

Ni (x , y)Ti = [N ]{T } (7.24)

where Ni (x , y) is the interpolation function associated with nodal temperature
Ti , [N ] is the row matrix of interpolation functions, and {T } is the column matrix
(vector) of nodal temperatures.

Applying Galerkin’s finite element method, the residual equations corre-
sponding to Equation 7.23 are
∫∫

A

Ni (x , y)

[
∂

∂x

(

tkx
∂T

∂x

)

+ ∂

∂y

(

tky
∂T

∂y

)

+ Qt − 2h(T − Ta)

]

d A = 0

i = 1, M (7.25)

where thickness t is assumed constant and the integration is over the area of the
element. (Strictly speaking, the integration is over the volume of the element,
since the volume is the domain of interest.) To develop the finite element
equations for the two-dimensional case, a bit of mathematical manipulation is
required.

Consider the first two integrals in Equation 7.25 as

t

∫∫

A

[
∂

∂x

(

kx
∂T

∂x

)

Ni + ∂

∂y

(

ky
∂T

∂y

)

Ni

]

d A

= −t

∫∫

A

(
∂qx

∂x
Ni + ∂qy

∂y
Ni

)

d A (7.26)

and note that we have used Fourier’s law per Equation 7.21. For illustration, we
now assume a rectangular element, as shown in Figure 7.7a, and examine

t

∫∫

A

∂qx

∂x
Ni d A = t

y2∫

y1

x2∫

x1

∂qx

∂x
Ni dx dy (7.27)

(a)

(x1, y1) (x2, y1)

(x1, y2) (x2, y2)

Figure 7.7 Illustration of boundary heat flux in x direction.

(b)

qx(x1, y) qx(x2, y) x

y

a� b�

a b
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Integrating by parts on x with u = Ni and dv = ∂qx

∂x
dx , we obtain, formally,

t

∫∫

A

∂qx

∂x
Ni d A = t

y2∫

y1

qx Ni

∣
∣

x2

x1
dy − t

y2∫

y1

x2∫

x1

qx
∂ Ni

∂x
dx dy

= t

y2∫

y1

qx Ni

∣
∣

x2

x1
dy + t

∫

A

kx
∂T

∂x

∂ Ni

∂x
d A (7.28)

Now let us examine the physical significance of the term

t

y2∫

y1

qx Ni

∣
∣

x2

x1
dy = t

y2∫

y1

[qx (x2, y) Ni (x2, y) − qx (x1, y) Ni (x1, y)] dy (7.29)

The integrand is the weighted value (Ni is the scalar weighting function) of the
heat flux in the x direction across edges a-a ′ and b-b′ in Figure 7.7b. Hence, when
we integrate on y, we obtain the difference in the weighted heat flow rate in the
x direction across b-b′ and a-a ′, respectively. Noting the obvious fact that the
heat flow rate in the x direction across horizontal boundaries a-b and a ′-b′ is zero,
the integral over the area of the element is equivalent to an integral around the
periphery of the element, as given by

t

∫∫

A

qx Ni d A = t

∮

S

qx Ni nx dS (7.30)

In Equation 7.30, S is the periphery of the element and nx is the x component
of the outward unit vector normal (perpendicular) to the periphery. In our exam-
ple, using a rectangular element, we have nx = 1 along b-b′, nx = 0 along b′-a ′,
nx = −1 along a ′-a , and nx = 0 along a-b. Note that the use of the normal vec-
tor component ensures that the directional nature of the heat flow is accounted
for properly. For theoretical reasons beyond the scope of this text, the integration
around the periphery S is to be taken in the counterclockwise direction; that is,
positively, per the right-hand rule.

An identical argument and development will show that, for the y-direction
terms in equation Equation 7.26,

t

∫∫

A

∂

∂y

(

ky
∂T

∂y

)

Ni d A = −t

∮

S

qy Ni n y dS −
∫

A

ky
∂T

∂y

∂ Ni

∂y
d A (7.31)

These arguments, based on the specific case of a rectangular element, are
intended to show an application of a general relation known as the Green-Gauss
theorem (also known as Green’s theorem in the plane) stated as follows: Let
F (x , y) and G (x , y) be continuous functions defined in a region of the x-y plane
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(for our purposes the region is the area of an element); then
∫∫

A

(

	
∂ F

∂x
+ 	

∂G

∂y

)

=
∮

S

(	 Fnx + 	Gn y) dS

−
∫∫

A

(
∂ F

∂x

∂	

∂x
+ ∂G

∂y

∂	

∂y

)

d A (7.32)

Returning to Equation 7.26, we let F = kx
∂T
∂x , G = ky

∂T
∂y , and 	 = Ni (x , y), and

apply the Green-Gauss theorem to obtain

t

∫∫

A

[
∂

∂x

(

kx
∂T

∂x

)

Ni + ∂

∂y

(
∂T

∂y

)

Ni

]

d A

= −t

∮

S

(qx nx + qyn y) Ni dS − t

∫∫

A

(

kx
∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y

)

d A (7.33)

Application of the Green-Gauss theorem, as in this development, is the two-
dimensional counterpart of integration by parts in one dimension. The result is
that we have introduced the boundary gradient terms as indicated by the first
integral on the right-hand side of Equation 7.33 and ensured that the conductance
matrix is symmetric, per the second integral, as will be seen in the remainder of
the development.

Returning to the Galerkin residual equation represented by Equation 7.25
and substituting the relations developed via the Green-Gauss theorem (being
careful to observe arithmetic signs), Equation 7.25 becomes
∫∫

A

(

kx
∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y

)

t d A + 2h

∫∫

A

T Ni d A

=
∫∫

A

Q N i t d A + 2hTa

∫∫

A

Ni d A − t

∮

S

(qx nx + qyn y) Ni dS i = 1, M

(7.34)

as the system of M equations for the two-dimensional finite element formulation
via Galerkin’s method. In analogy with the one-dimensional case of Equa-
tion 7.8, we observe that the left-hand side includes the unknown temperature
distribution while the right-hand side is composed of forcing functions, repre-
senting internal heat generation, surface convection, and boundary heat flux.

At this point, we convert to matrix notation for ease of illustration by
employing Equation 7.24 to convert Equation 7.34 to
∫∫

A

(

kx

[
∂N

∂x

]T[
∂N

∂x

]

+ ky

[
∂N

∂y

]T[
∂N

∂y

])

{T }t dA + 2h
∫∫

A

[N ]T [N ]{T } dA

=
∫∫

A

Q[N ]T t dA + 2hTa

∫∫

A

[N ]T dA −
∮

S

qsns[N ]T t dS (7.35)
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which is of the form
[

k (e)
] {T } = {

f (e)
Q

} + {

f (e)
h

} + {

f (e)
g

}

(7.36)

as desired.
Comparison of Equations 7.35 and 7.36 shows that the conductance matrix is

[

k (e)
] =

∫∫

A

(

kx

[
∂ N

∂x

]T [
∂ N

∂x

]

+ ky

[
∂ N

∂y

]T [
∂ N

∂y

]
)

t d A

+ 2h

∫∫

A

[N ]T [N ] d A (7.37)

which for an element having M nodes is an M × M symmetric matrix. While we
use the term conductance matrix, the first integral term on the right of Equa-
tion 7.37 represents the conduction “stiffness,” while the second integral repre-
sents convection from the lateral surfaces of the element to the surroundings. If
the lateral surfaces do not exhibit convection (i.e., the surfaces are insulated), the
convection terms are removed by setting h = 0. Note that, in many finite element
software packages, the convection portion of the conductance matrix is not auto-
matically included in element matrix formulation. Instead, lateral surface (as
well as edge) convection effects are specified by applying convection “loads” to
the surfaces as appropriate. The software then modifies the element matrices as
required.

The element forcing functions are described in column matrix (vector)
form as

{

f (e)
Q

} =
∫∫

A

Q[N ]T t d A =
∫∫

A

Q{N } t d A

{

f (e)
h

} = 2hTa

∫∫

A

[N ]T d A = 2hTa

∫∫

A

{N } d A

{

f (e)
g

} = −
∮

S

qsns[N ]T t dS = −
∮

S

qsns{N } t dS

(7.38)

where [N ]T = {N } is the M × 1 column matrix of interpolation functions.
Equations 7.36–7.38 represent the general formulation of a finite element for

two-dimensional heat conduction with convection from the surfaces. Note in
particular that these equations are valid for an arbitrary element having M nodes
and, therefore, any order of interpolation functions (linear, quadratic, cubic, etc.).
In following examples, use of specific element geometries are illustrated.

7.4.2 Boundary Conditions

The boundary conditions for two-dimensional conduction with convection may
be of three types, as illustrated by Figure 7.8 for a general two-dimensional
domain. On portion S1 of the boundary, the temperature is prescribed as a known
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S1

S2q*

S3

h(T �Ta)

T �T*

Figure 7.8 Types of boundary
conditions for two-dimensional
conduction with convection.

constant value TS1 = T ∗. In a finite element model of such a domain, every ele-
ment node located on S1 has known temperature and the corresponding nodal
equilibrium equations become “reaction” equations. The reaction “forces” are
the heat fluxes at the nodes on S1. In using finite element software packages, such
conditions are input data; the user of the software (“FE programmer”) enters
such data as appropriate at the applicable nodes of the finite element model (in
this case, specified temperatures).

The heat flux on portion S2 of the boundary is prescribed as qS2 = q∗. This
is analogous to specified nodal forces in a structural problem. Hence, for all ele-
ments having nodes on S2, the third of Equation 7.38 gives the corresponding
nodal forcing functions as

{

f (e)
g

} = −
∮

S2

q∗nS2{N }t dS (7.39)

Finally, a portion S3 of the boundary illustrates an edge convection condi-
tion. In this situation, the heat flux at the boundary must be equilibrated by the
convection loss from S3. For all elements having edges on S3, the convection
condition is expressed as

{

f (e)
g

} = −
∮

S3

qS3 nS3{N }t dS = −
∮

S3

h(T (e) − Ta){N }t dS (7.40)

Noting that the right-hand side of Equation 7.40 involves the nodal temper-
atures, we rewrite the equation as

{

f (e)
g

} = −
∮

S3

h[N ]T [N ]{T }t dS3 +
∮

S3

hTa{N }t dS3 (7.41)

and observe that, when inserted into Equation 7.36, the first integral term on the
right of Equation 7.41 adds stiffness to specific terms of the conductance matrix
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associated with nodes on S3. To generalize, we rewrite Equation 7.41 as

{

f (e)
g

} = −[

k (e)
hS

]{T } + {

f (e)
hS

}

(7.42)

where

[

k (e)
hS

] =
∮

S

h[N ]T [N ]t dS (7.43)

is the contribution to the element conductance matrix owing to convection on
portion S of the element boundary and

{

f (e)
hS

} =
∮

S

hTa{N }t dS (7.44)

is the forcing function associated with convection on S.
Incorporating Equation 7.42 into Equation 7.36, we have

[

k (e)
] {T } = {

f (e)
Q

} + {

f (e)
h

} + {

f (e)
g

} + {

f (e)
hS

}

(7.45)

where the element conductance matrix is now given by

[

k (e)
] =

∫∫

A

(

kx

[
∂ N

∂x

]T [
∂ N

∂x

]

+ ky

[
∂ N

∂y

]T [
∂ N

∂y

]
)

t d A

+ 2h

∫∫

A

[N ]T [N ] d A + h

∮

S

[N ]T [N ] t dS (7.46)

which now explicitly includes edge convection on portion(s) S of the element
boundary subjected to convection.

Determine the conductance matrix (excluding edge convection) for a four-node, rectan-
gular element having 0.5 in. thickness and equal sides of 1 in. The material has thermal
properties kx = ky = 20 Btu/(hr-ft-◦F) and h = 50 Btu/(hr-ft2-◦F).

■ Solution
The element with node numbers is as shown in Figure 7.9 and the interpolation functions,
Equation 6.56, are

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

EXAMPLE 7.4

1

34

s

r

2

Figure 7.9 Element
node numbering
for Example 7.4;
the length of each
edge is 1 in.
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N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

in terms of the normalized coordinates r and s. For the 1-in. square element, we have
2a = 2b = 1 and d A = dx dy = ab dr ds . The partial derivatives in terms of the nor-
malized coordinates, via the chain rule, are

∂ Ni

∂ x
= ∂ Ni

∂r

∂r

∂ x
= 1

a

∂ Ni

∂r
i = 1, 4

∂ Ni

∂y
= ∂ Ni

∂s

∂s

∂y
= 1

b

∂ Ni

∂s
i = 1, 4

Therefore, Equation 7.37 becomes

[

k (e)
] =

1∫

−1

1∫

−1

(

kx

[
∂ N

∂r

]T [
∂ N

∂r

]
1

a2
+ ky

[
∂ N

∂s

]T [
∂ N

∂s

]
1

b2

)

tab dr ds

+ 2h

1∫

−1

[N ]T [N ]ab dr ds

or, on a term by term basis,

ki j =
1∫

−1

1∫

−1

(

kx
∂ Ni

∂r

∂ Nj

∂r

1

a2
+ ky

∂ Ni

∂s

∂ Nj

∂s

1

b2

)

tab dr ds

+ 2h

1∫

−1

1∫

−1

Ni Nj ab dr ds i, j = 1, 4

or

ki j =
1∫

−1

1∫

−1

(

kx
∂ Ni

∂r

∂ Nj

∂r

b

a
+ ky

∂ Ni

∂s

∂ Nj

∂s

a

b

)

t dr ds

+ 2h

1∫

−1

1∫

−1

Ni Nj ab dr ds i, j = 1, 4

Assuming that kx and ky are constants, we have

ki j = kx t
b

a

1∫

−1

1∫

−1

∂ Ni

∂r

∂ Nj

∂r
dr ds + ky t

a

b

1∫

−1

1∫

−1

∂ Ni

∂s

∂ Nj

∂s
dr ds

+ 2 hab

1∫

−1

1∫

−1

Ni Nj dr ds i, j = 1, 4
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The required partial derivatives are

∂ N1

∂r
= 1

4
(s − 1)

∂ N1

∂s
= 1

4
(r − 1)

∂ N2

∂r
= 1

4
(1 − s)

∂ N2

∂s
= − 1

4
(1 + r )

∂ N3

∂r
= 1

4
(1 + s)

∂ N3

∂s
= 1

4
(1 + r )

∂ N4

∂r
= − 1

4
(1 + s)

∂ N4

∂s
= 1

4
(1 − r )

Substituting numerical values (noting that a = b), we obtain, for example,

k11 = 20

1∫

−1

1∫

−1

[
1

16
(s − 1)2 + 1

16
(r − 1)2

] (
0.5

12

)

dr ds

+ 2(50)

1∫

−1

1∫

−1

1

16
(1 − r )2 (1 − s)2

(
0.5

12

)2

dr ds

Integrating first on r,

k11 = 20(0.5)

16(12)

1∫

−1

(s − 1)2 r
∣
∣

1

−1
+ (r − 1)3

3

∣
∣
∣
∣

1

−1

ds

− 100

16

(
0.5

12

)2
1∫

−1

(1 − s)2 (1 − r )3

3

∣
∣
∣
∣

1

−1

ds

or

k11 = 20(0.5)

16(12)

1∫

−1

[

(s − 1)2(2) + 8

3

]

ds + 100

16

(
0.5

12

)2
1∫

−1

(1 − s)2 8

3
ds

Then, integrating on s, we obtain

k11 = 20(0.5)

16(12)

(
2(s − 1)3

3
+ 8

3
s

)∣
∣
∣
∣

1

−1

− 100

16

(
0.5

12

)2 ( 8

3

)(
(1 − s)3

3

)1

−1

or

k11 = 20(0.5)

16(12)

(
16

3
+ 16

3

)

+ 100

16

(
0.5

12

)2( 8

3

)(
8

3

)

= 0.6327 Btu/(hr-◦F)

The analytical integration procedure just used to determine k11 is not the method used by
finite element software packages; instead, numerical methods are used, primarily the
Gauss quadrature procedure discussed in Chapter 6. If we examine the terms in the inte-
grands of the equation defining ki j , we find that the integrands are quadratic functions
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of r and s. Therefore, the integrals can be evaluated exactly by using two Gauss points
in r and s. Per Table 6.1, the required Gauss points and weighting factors are ri , sj =
± 0.57735 and Wi , Wj = 1.0, i, j = 1, 2. Using the numerical procedure for k11 , we write

k11 = kx t
b

a

1∫

−1

1∫

−1

1

16
(s − 1)2 dr ds + ky t

b

a

1∫

−1

1∫

−1

1

16
(r − 1)2 dr ds

+ 2hab

1∫

−1

1

16
(r − 1)2(s − 1)2 dr ds

= kx t
b

a

2∑

i=1

2∑

j=1

1

16
Wi Wj (sj − 1)2 + ky t

a

b

2∑

i=1

2∑

j=1

1

16
Wi Wj (ri − 1)2

+ 2hab
2∑

i=1

2∑

j=1

1

16
Wi Wj (1 − ri )

2(1 − sj )
2

and, using the specified integration points and weighting factors, this evaluates to 

k11 = kx t
b

a

(
1

3

)

+ ky t
a

b

(
1

3

)

+ 2hab

(
4

9

)

It is extremely important to note that the result expressed in the preceding equation is the
correct value of k11 for any rectangular element used for the two-dimensional heat con-
duction analysis discussed in this section. The integrations need not be repeated for each
element; only the geometric quantities and the conductance values need be substituted to
obtain the value. Indeed, if we substitute the values for this example, we obtain

k11 = 0.6327 Btu/(hr-◦F)

as per the analytical integration procedure.
Proceeding with the Gaussian integration procedure (calculation of some of these

terms are to be evaluated as end-of-chapter problems), we find

k11 = k22 = k33 = k44 = 0.6327 Btu/(hr-◦F)

Why are these values equal?
The off-diagonal terms (again using the numerical integration procedure) are calcu-

lated as

k12 = −0.1003

k13 = −0.2585

k14 = −0.1003

k23 = −0.1003

k24 = −0.2585

k34 = −0.1003



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

246 CHAPTER 7 Applications in Heat Transfer

Btu/(hr-◦F), and the complete element conductance matrix is

[

k(e)
] =







0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6327 −0.1003 −0.2585
−0.2585 −0.1003 0.6327 −0.1003
−0.1003 −0.2585 −0.1003 0.6327







Btu/(hr-◦F)

Figure 7.10a depicts a two-dimensional heating fin. The fin is attached to a pipe on its
left edge, and the pipe conveys water at a constant temperature of 180◦F. The fin
is surrounded by air at temperature 68◦F. The thermal properties of the fin are as given
in Example 7.4. Use four equal-size four-node rectangular elements to obtain a finite
element solution for the steady-state temperature distribution in the fin. 

■ Solution
Figure 7.10b shows four elements with element and global node numbers. Given the
numbering scheme selected, we have constant temperature conditions at global nodes
1, 2, and 3 such that

T1 = T2 = T3 = 180◦F

while on the other edges, we have convection boundary conditions that require a bit of
analysis to apply. For element 1 (Figure 7.10c), for instance, convection occurs along
element edge 1-2 but not along the other three element edges. Noting that s = −1 and

EXAMPLE 7.5

(a)

2 in.

2 in. 68� F180� F

Figure 7.10 Example 7.5:
(a) Two-dimensional fin. (b) Finite element model.
(c) Element 1 edge convection. (d) Element 2 edge
convection.

(b)

4

1 2

5

4 7

2

1

3 6 9

8

3

(c)

1

1

2 5

4

(d)

2

4

5 8

7
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N3 = N4 = 0 on edge 1-2, Equation 7.43 becomes

[

k(1)
h S

]

=
(

1

4

)

ht

1∫

−1







1 − r
1 + r

0
0







[ 1 − r 1 + r 0 0 ] a dr

= hta

4

1∫

−1







(1 − r)2 1 − r2 0 0
1 − r2 (1 + r)2 0 0

0 0 0 0
0 0 0 0







dr

Integrating as indicated gives

[

k(1)
hS

]

= hta

4(3)







8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0







= 50(0.5)2

4(3)(12)2







8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0







=







0.0579 0.0290 0 0
0.0290 0.0579 0 0

0 0 0 0
0 0 0 0







where the units are Btu/(hr-◦F).
The edge convection force vector for element 1 is, per Equation 7.44,

{

f (1)
hS

}

= hTa t

2

1∫

−1







1 − r
1 + r

0
0







a dr = hTa ta

2







2
2
0
0







= 50(68)(0.5)2

2(12)2







2
2
0
0







=







5.9028
5.9028

0
0







Btu/hr

where we again utilize s = −1, N3 = N4 = 0 along the element edge bounded by nodes
1 and 2.

Next consider element 2. As depicted in Figure 7.10d, convection occurs along two
element edges defined by element nodes 1-2 (s = −1) and element nodes 2-3 (r = 1).
For element 2, Equation 7.43 is

[

k(2)
h S

]

= ht

4







1∫

−1







1 − r
1 + r

0
0







[ 1 − r 1 + r 0 0 ]a dr

+
1∫

−1







0
1 − s
1 + s

0







[ 0 1 − s 1 + s 0 ]b ds






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or, after integrating,

[

k(2)
hS

]

= hta

4(3)







8 4 0 0
4 8 0 0
0 0 0 0
0 0 0 0







+ htb

4(3)







0 0 0 0
0 8 4 0
0 4 8 0
0 0 0 0







and, since a = b,

[

k(2)
hS

]

= 50(0.5)2

4(3)(12)2







8 4 0 0
4 16 4 0
0 4 8 0
0 0 0 0







=







0.0579 0.0290 0 0
0.0290 0.1157 0.0290 0

0 0.0290 0.0579 0
0 0 0 0







Btu/(hr-◦F)

Likewise, the element edge convection force vector is obtained by integration along the
two edges as

{

f (2)
hS

}

= hTa t

2







1∫

−1







1 − r
1 + r

0
0







a dr +
1∫

−1







0
1 − s
1 + s

0







b ds







= 50(68)(0.5)2

2(12)2







2
4
2
0







=







5.9028
11.8056
5.9028

0







Btu/hr

Identical procedures applied to the appropriate edges of elements 3 and 4 result in

[

k(3)
hS

]

= 50(0.5)2

4(3)(12)2







0 0 0 0
0 8 4 0
0 4 16 4
0 0 4 8







=







0 0 0 0
0 0.0579 0.0290 0
0 0.0290 0.1157 0.0290
0 0 0.0290 0.0579







Btu/(hr-◦F)

[

k(4)
hS

]

= 50(0.5)2

4(3)(12)2







0 0 0 0
0 0 0 0
0 0 8 4
0 0 4 8







=







0 0 0 0
0 0 0 0
0 0 0.0579 0.0290
0 0 0.0290 0.0579







Btu/(hr-◦F)

{

f (3)
hS

}

=







0
5.9028
11.8056
5.9028







Btu/hr

{

f (4)
hS

}

=







0
0

5.9028
5.9028







Btu/hr
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As no internal heat is generated, the corresponding { f (e)
Q } force vector for each element is

zero; that is,

{

f (e)
Q

}

=
∫∫

A

Q{N } dA = {0}

for each element.
On the other hand, each element exhibits convection from its surfaces, so the lateral

convection force vector is

{

f (e)
h

}

= 2hTa

∫∫

A

{N } dA = 2hTa

1∫

−1

1∫

−1

(
1

4

)







(1 − r)(1 − s)

(1 + r)(1 − s)

(1 + r)(1 + s)

(1 − r)(1 + s)







ab dr ds

which evaluates to

{

f (e)
h

}

= 2hTa ab

4







4
4
4
4







= 2(50)(68)(0.5)2

4(12)2







4
4
4
4







=







11.8056
11.8056
11.8056
11.8056







and we note that, since the element is square, the surface convection forces are distributed
equally to each of the four element nodes.

The global equations for the four-element model can now be assembled by writing
the element-to-global nodal correspondence relations as

[

L (1)
] = [ 1 4 5 2 ]

[

L (2)
] = [ 4 7 8 5 ]

[

L (3)
] = [ 5 8 9 6 ]

[

L (4)
] = [ 2 5 6 3 ]

and adding the edge convection terms to obtain the element stiffness matrices as

[

k(1)
] =







0.6906 −0.0713 −0.2585 −0.1003
−0.0713 0.6906 −0.1003 −0.2585
−0.2585 −0.1003 0.6327 −0.1003
−0.1003 −0.2585 −0.1003 0.6327







[

k(2)
] =







0.6906 −0.0713 −0.2585 −0.1003
−0.0713 0.7484 −0.0713 −0.2585
−0.2585 −0.0713 0.6906 −0.1003
−0.1003 −0.2585 −0.1003 0.6327







[

k(3)
] =







0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6906 −0.0713 −0.2585
−0.2585 −0.0713 0.7484 −0.0713
−0.1003 −0.2585 −0.0713 0.6906






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[

k(4)
] =







0.6327 −0.1003 −0.2585 −0.1003
−0.1003 0.6327 −0.1003 −0.2585
−0.2585 −0.1003 0.6906 −0.0713
−0.1003 −0.2585 −0.0713 0.6906







Utilizing the direct assembly-superposition method with the element-to-global node
assignment relations, the global conductance matrix is

[K ] =


















0.6906 −0.1003 0 −0.0713 −0.2585 0 0 0 0
−0.1003 1.2654 −0.1003 −0.2585 −0.2006 −0.2585 0 0 0

0 −0.1003 0.6906 0 −0.2585 −0.0713 0 0 0
−0.0713 −0.2585 0 1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2585 −0.0713 0 −0.2006 1.3812 0 −0.2585 −0.0713
0 0 0 −0.0713 −0.2585 0 0.7484 −0.2585 0
0 0 0 −0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713
0 0 0 0 −0.2585 −0.0713 0 −0.0713 0.7484


















The nodal temperature vector is

{T } =







180
180
180
T4

T5

T6

T7

T8

T9







and we have explicitly incorporated the prescribed temperature boundary conditions.
Assembling the global force vector, noting that no internal heat is generated, we

obtain

{F} =







17.7084 + F1

35.4168 + F2

17.7084 + F3

35.4168
47.2224
35.4168
23.6112
35.4168
23.6112







Btu/hr

where we use F1 , F2 , and F3 as general notation to indicate that these are unknown
“reaction” forces. In fact, as will be shown, these terms are the heat flux components at
nodes 1, 2, and 3.
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The global equations for the four-element model are then expressed as


















0.6906 −0.1003 0 −0.0713 −0.2585 0 0 0 0
−0.1003 1.2654 −0.1003 −0.2585 −0.2006 −0.2585 0 0 0

0 −0.1003 0.6906 0 −0.2585 −0.0713 0 0 0
−0.0713 −0.2585 0 1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2585 −0.0713 0 −0.2006 1.3812 0 −0.2585 −0.0713
0 0 0 −0.0713 −0.2585 0 0.7484 −0.2585 0
0 0 0 −0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713
0 0 0 0 −0.2585 −0.0713 0 −0.0713 0.7484


















������������������������������������

�
�
�
�
�
�
�
�
�
�







180
180
180
T4

T5

T6

T7

T8

T9







��

=







17.7084 + F1

35.4168 + F2

17.7084 + F3

35.4168
47.2224
35.4168
23.6112
35.4158
23.6112







�����

Taking into account the specified temperatures on nodes 1, 2, and 3, the global equations
for the unknown temperatures become












1.3812 −0.2006 0 −0.0713 −0.2585 0
−0.2006 2.5308 −0.2006 −0.2585 −0.2006 −0.2585

0 −0.2006 1.3812 0 −0.2585 −0.0713
−0.0713 −0.2585 0 0.7484 −0.2585 0
−0.2585 −0.2006 −0.2585 −0.2585 1.3812 −0.0713

0 −0.2585 −0.0713 0 −0.0713 0.7484


















T4

T5

T6

T7

T8

T9







=







94.7808
176.3904
94.7808
23.6112
35.4168
23.6112







The reader is urged to note that, in arriving at the last result, we partition the global matrix
as shown by the dashed lines and apply Equation 3.46a to obtain the equations governing
the “active” degrees of freedom. That is, the partitioned matrix is of the form

[

Kcc Kca

Kac Kaa

] {

Tc

Ta

}

=
{

Fc

Fa

}

where the subscript c denotes terms associated with constrained (specified) temperatures
and the subscript a denotes terms associated with active (unknown) temperatures. Hence,
this 6 × 6 system represents

[Kaa ]{Ta } = {Fa } − [Kac]{Tc}

which now properly includes the effects of specified temperatures as forcing functions on
the right-hand side.
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Simultaneous solution of the global equations (in this case, we inverted the global
stiffness matrix using a spreadsheet program) yields the nodal temperatures as







T4

T5

T6

T7

T8

T9







=







106.507

111.982

106.507

89.041

90.966

89.041







◦F

If we now back substitute the computed nodal temperatures into the first three of the
global equations, specifically,

0.6906T1 − 0.1003T2 − 0.0713T4 − 0.2585T5 = 17.7084 + F1

− 0.1003T1 + 1.2654T2 − 0.1003T3 − 0.2585T4 − 0.2006T5 − 0.2585T6 = 35.4168 + F2

− 0.1003T2 + 0.6906T3 − 0.2585T5 − 0.0713T6 = 17.7084 + F3

we obtain the heat flow values at nodes 1, 2, and 3 as






F1

F2

F3






=







52.008
78.720
52.008






Btu/hr

Note that, in terms of the matrix partitioning, we are now solving

[Kcc]{Tc} + [Kca ]{Ta } = {Fc}
to obtain the unknown values in {Fc}.

Since there is no convection from the edges defined by nodes 1-2 and 1-3 and the
temperature is specified on these edges, the reaction “forces” represent the heat input
(flux) across these edges and should be in balance with the convection loss across the lat-
eral surfaces of the body, and its edges, in a steady-state situation. This balance is a check
that can and should be made on the accuracy of a finite element solution of a heat trans-
fer problem and is analogous to checking equilibrium of a structural finite element
solution.

Example 7.5 is illustrated in great detail to point out the systematic proce-
dures for assembling the global matrices and force vectors. The astute reader
ascertains, in following the solution, that symmetry conditions can be used to
simplify the mathematics of the solution. As shown in Figure 7.11a, an axis
(plane) of symmetry exists through the horizontal center of the plate. Therefore,
the problem can be reduced to a two-element model, as shown in Figure 7.11b.
Along the edge of symmetry, the y-direction heat flux components are in balance,
and this edge can be treated as a perfectly insulated edge. One could then use
only two elements, with the appropriately adjusted boundary conditions to obtain
the same solution as in the example.
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Plane of
symmetry

(a)

Figure 7.11 Model of Example 7.5,
showing (a) the plane of symmetry and
(b) a two-element model with adjusted
boundary conditions. 

(b)

1

1 3 5

62

2T �180�F
4

7.4.3 Symmetry Conditions

As mentioned previously in connection with Example 7.5, symmetry conditions
can be used to reduce the size of a finite element model (or any other computa-
tional model). Generally, the symmetry is observed geometrically; that is, the
physical domain of interest is symmetric about an axis or plane. Geometric sym-
metry is not, however, sufficient to ensure that a problem is symmetric. In addi-
tion, the boundary conditions and applied loads must be symmetric about the
axis or plane of geometric symmetry as well. To illustrate, consider Figure 7.12a,
depicting a thin rectangular plate having a heat source located at the geometric
center of the plate. The model is of a heat transfer fin removing heat from a cen-
tral source (a pipe containing hot fluid, for example) via conduction and convec-
tion from the fin. Clearly, the situation depicted is symmetric geometrically. But,
is the situation a symmetric problem? The loading is symmetric, since the heat
source is centrally located in the domain. We also assume that kx = ky so that the
material properties are symmetric. Hence, we must examine the boundary condi-
tions to determine if symmetry exists. If, for example, as shown in Figure 7.12b,
the ambient temperatures external to the fin are uniform around the fin and the
convection coefficients are the same on all surfaces, the problem is symmetric
about both x and y axes and can be solved via the model in Figure 7.12c. For this
situation, note that the heat from the source is conducted radially and, conse-
quently, across the x axis, the heat flux qy is zero and, across the y axis, the heat
flux qx must also be zero. These observations reveal the boundary conditions for
the quarter-symmetry model shown in Figure 7.12d and the internal forcing
function is taken as Q/4. On the other hand, let us assume that the upper edge of
the plate is perfectly insulated, as in Figure 7.12e. In this case, we do not have



Hutton: Fundamentals of 
Finite Element Analysis

7. Applications in Heat 
Transfer

Text © The McGraw−Hill 
Companies, 2004

254 CHAPTER 7 Applications in Heat Transfer

(a)

2b

2a

Q x

y

Figure 7.12 Illustrations of symmetry dictated by boundary conditions.
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a

2b

x

y

symmetric conditions about the x axis but symmetry about the y axis exists. For
these conditions, we can use the “half-symmetry” model shown in Figure 7.12f,
using the symmetry (boundary) condition qx = 0 across x = 0 and apply the
internal heat generation term Q/2.

Symmetry can be used to reduce the size of finite element models signifi-
cantly. It must be remembered that symmetry is not simply a geometric occur-
rence. For symmetry, geometry, loading, material properties, and boundary
conditions must all be symmetric (about an axis, axes, or plane) to reduce the
model.

7.4.4 Element Resultants

In the approach just taken in heat transfer analysis, the primary nodal variable
computed is temperature. Most often in such analyses, we are more interested in
the amount of heat transferred than the nodal temperatures. (This is analogous to
structural problems: We solve for nodal displacements but are more interested in
stresses.) In finite element analyses of heat transfer problems, we must back sub-
stitute the nodal temperature solution into the “reaction” equations to obtain
global heat transfer values. (As in Example 7.5, when we solved the partitioned
matrices for the heat flux values at the constrained nodes.) Similarly, we can back
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substitute the nodal temperatures to obtain estimates of heat transfer properties
of individual elements as well.

The heat flux components for a two-dimensional element, per Fourier’s law,
are

q (e)
x = −kx

∂T (e)

∂x
= −kx

M∑

i=1

∂ Ni

∂x
T (e)

i

q (e)
y = −ky

∂T (e)

∂y
= −ky

M∑

i=1

∂ Ni

∂y
T (e)

i

(7.47)

where we again denote the total number of element nodes as M. With the excep-
tion of the three-node triangular element, the flux components given by Equa-
tion 7.47 are not constant but vary with position in the element. As an example,
the components for the four-node rectangular element are readily computed
using the interpolation functions of Equation 6.56, repeated here as

N1(r, s) = 1

4
(1 − r )(1 − s)

N2(r, s) = 1

4
(1 + r )(1 − s)

N3(r, s) = 1

4
(1 + r )(1 + s)

N4(r, s) = 1

4
(1 − r )(1 + s)

(7.48)

Recalling that

∂

∂x
= 1

a

∂

∂r
and

∂

∂y
= 1

b

∂

∂s

we have

q (e)
x = − kx

a

4∑

i=1

∂ Ni

∂r
T (e)

i

= − kx

4a

[

(s − 1)T (e)
1 + (1 − s)T (e)

2 + (1 + s)T (e)
3 − (1 + s)T (e)

4

]

q (e)
y = − ky

b

4∑

i=1

∂ Ni

∂s
T (e)

i

= − ky

4b

[

(r − 1)T (e)
1 − (1 + r )T (e)

2 + (1 + r )T (e)
3 + (1 − r )T (e)

4

]

(7.49)
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and these expressions simplify to

q (e)
x = − kx

4a

[

(1 − s)
(

T (e)
2 − T (e)

1

) + (1 + s)
(

T (e)
3 − T (e)

4

)]

q (e)
y = − ky

4b

[

(1 − r )
(

T (e)
4 − T (e)

1

) + (1 + r )
(

T (e)
3 − T (e)

2

)]
(7.50)

The flux components, therefore the temperature gradients, vary linearly in a four-
node rectangular element. However, recall that, for a C 0 formulation, the gradi-
ents are not, in general, continuous across element boundaries. Consequently, the
element flux components associated with an individual element are customarily
taken to be the values calculated at the centroid of the element. For the rectangu-
lar element, the centroid is located at (r, s) = (0, 0), so the centroidal values are
simply

q (e)
x = − kx

4a

(

T (e)
2 + T (e)

3 − T (e)
1 − T (e)

4

)

q (e)
y = − ky

4b

(

T (e)
3 + T (e)

4 − T (e)
1 − T (e)

2

)
(7.51)

The centroidal values calculated per Equation 7.51, in general, are quite accurate
for a fine mesh of elements. Some finite element software packages compute the
values at the integration points (the Gauss points) and average those values for
an element value to be applied at the element centroid. In either case, the com-
puted values are needed to determine solution convergence and should be
checked at every stage of a finite element analysis.

Calculate the centroidal heat flux components for elements 2 and 3 of Example 7.5.

■ Solution
From Example 7.4, we have a = b = 0.5 in., kx = ky = 20 Btu/(hr-ft-◦F) , and from
Example 7.5, the nodal temperature vector is

{T } =







T1

T2

T3

T4

T5

T6

T7

T8

T9







=







180
180
180

106.507
111.982
106.507
89.041
90.966
89.041







◦F

For element 2, the element-global nodal correspondence relation can be written as
[

T (2)
1 T (2)

2 T (2)
3 T (2)

4

] = [T4 T7 T8 T5]

= [106.507 89.041 90.966 111.982]

EXAMPLE 7.6
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Substituting numerical values into Equation 7.49,

q (2)
x = − 12(20)

4(0.5)
(89.041 + 90.966 − 106.507 − 111.982) = 4617 .84 Btu/(hr-ft2)

q (2)
y = − 12(20)

4(0.5)
(90.966 + 111.982 − 106.507 − 89.041) = −888.00 Btu/(hr-ft2)

and, owing to the symmetry conditions, we have

q (3)
x = 4617 .84 Btu/(hr-ft2)

q (3)
y = 888.00 Btu/(hr-ft2)

as may be verified by direct calculation. Recall that these values are calculated at the
location of the element centroid. 

The element resultants representing convection effects can also be readily
computed once the nodal temperature solution is known. The convection resul-
tants are of particular interest, since these represent the primary source of heat
removal (or absorption) from a solid body. The convective heat flux, per Equa-
tion 7.2, is

qx = h(T − Ta) Btu/(hr-ft2) or W/m2 (7.52)

where all terms are as previously defined. Hence, the total convective heat flow
rate from a surface area A is

Ḣh =
∫∫

A

h(T − Ta ) d A (7.53)

For an individual element, the heat flow rate is

Ḣ (e)
h =

∫∫

A

h(T (e) − Ta ) d A =
∫∫

A

h([N ]{T } − Ta ) d A (7.54)

The area of integration in Equation 7.54 includes all portions of the element sur-
face subjected to convection conditions. In the case of a two-dimensional element,
the area may include lateral surfaces (that is, convection perpendicular to the plane
of the element) as well as the area of element edges located on a free boundary.

Determine the total heat flow rate of convection for element 3 of Example 7.5. 

■ Solution
First we note that, for element 3, the element-to-global correspondence relation for nodal
temperatures is

[

T (3)
1 T (3)

2 T (3)
3 T (3)

4

] = [T5 T8 T9 T6]

EXAMPLE 7.7
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Second, element 3 is subjected to convection on both lateral surfaces as well as the two
edges defined by nodes 8-9 and 6-9. Consequently, three integrations are required as
follows:

Ḣ (e)
h = 2

∫∫

A(e)

h([N ]{T } − Ta ) d A(e) +
∫∫

A8−9

h([N ]{T } − Ta ) d A8−9

+
∫∫

A6−9

h([N ]{T } − Ta ) d A6−9

where A(e) is element area in the xy plane and the multiplier in the first term (2) accounts
for both lateral surfaces.

Transforming the first integral to normalized coordinates results in

I1 = 2hab

1∫

−1

1∫

−1

([N ] {T } − Ta ) dr ds = 2hab

1∫

−1

1∫

−1

[N ] dr ds {T } − 2habTa

1∫

−1

dr ds

= 2h A

4

1∫

−1

1∫

−1

[N ] dr ds {T } − 2hAT a

Therefore, we need integrate the interpolation functions only over the area of the element,
as all other terms are known constants. For example,

1∫

−1

1∫

−1

N1 dr ds =
1∫

−1

1∫

−1

1

4
(1 − r )(1 − s) dr ds = 1

4

(1 − r )2

2

∣
∣
∣
∣

1

−1

(1 − s)2

2

∣
∣
∣
∣

1

−1

= 1

An identical result is obtained when the other three functions are integrated. The integral
corresponding to convection from the element lateral surfaces is then

I1 = 2h A

(

T (3)
1 + T (3)

2 + T (3)
3 + T (3)

4

4
− Ta

)

The first term in the parentheses is the average of the nodal temperatures, and this is a
general result for the rectangular element. Substituting numerical values

I1 = 2(50)(1)2

144

(
111.982 + 90.966 + 89.041 + 106.507

4
− 68

)

= 21.96 Btu/hr

Next, we consider the edge convection terms. Along edge 8-9,

I2 =
∫∫

A8−9

h([N ]{T } − Ta ) d A8−9

and, since r = 1 along that edge, d A8−9 = tb ds, and the integral becomes

I2 = htb

1∫

−1

([Nr=1]{T } − Ta ds)

= htb

1∫

−1

1

4
[0 1 − s 1 + s 0] ds {T } − htbTa

1∫

−1

ds
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= h(2tb)

[

0
1

2

1

2
0

]

{T } − h(2tb)Ta

= h Aedge

(

T (3)
2 + T (3)

3

2
− Ta

)

Again, we observe that the average temperature of the nodes associated with the area of
the edge appears. Stated another way, the convection area is allocated equally to the two
nodes, and this is another general result for the rectangular element. Inserting numerical
values,

I2 = 50(0.5)(1)

144

(
90.966 + 89.041

2
− 68

)

= 3.82 Btu/hr

By analogy, the edge convection along edge 6-9 is

I3 = h Aedge

(

T (3)
3 + T (3)

4

2
− Ta

)

= 50(0.5)(1)

144

(
89.041 + 106.507

2
− 68

)

= 5.17 Btu/hr

The total convective heat flow rate for element 3 is then

Ḣ (3)
h = I1 + I2 + I3 = 30.95 Btu/hr

7.4.5 Internal Heat Generation

To this point in the current discussion of heat transfer, only examples having
no internal heat generation ( Q = 0) have been considered. Also, for two-
dimensional heat transfer, we considered only thin bodies such as fins. Certainly
these are not the only cases of interest. Consider the situation of a body of
constant cross section having length much larger than the cross-sectional dimen-
sions, as shown in Figure 7.13a (we use a rectangular cross section for conve-
nience). In addition, an internal heat source is imbedded in the body and runs
parallel to the length. Practical examples include a floor slab containing a hot
water or steam pipe for heating and a sidewalk or bridge deck having embedded
heating cables to prevent ice accumulation. The internal heat generation source
in this situation is known as a line source.

Except very near the ends of such a body, heat transfer effects in the z direc-
tion can be neglected and the situation treated as a two-dimensional problem,
as depicted in Figure 7.13b. Assuming the pipe or heat cable to be small in
comparison to the cross section of the body, the source is treated as acting at a
single point in the cross section. If we model the problem via the finite element
method, how do we account for the source in the formulation? Per the first of
Equation 7.38, the nodal force vector corresponding to internal heat generation is

{

f (e)
Q

} =
∫∫

A

Q[N ]T t d A =
∫∫

A

Q{N }t d A (7.55)
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where, as before, t is element thickness. In this type of problem, it is customary
to take t as unity, so that all computations are per unit length. In accordance with
this convention, the source strength is denoted Q∗, having units typically
expressed as Btu/(hr-ft2) or W/m2. Equation 7.55 then becomes

{

f (e)
Q

} =
∫∫

A

Q∗[N ]T d A =
∫∫

A

Q∗{N } d A (7.56)

The question is now mathematical: How do we integrate a function applicable at
a single point in a two-dimensional domain? Mathematically, the operation is
quite simple if the concept of the Dirac delta or unit impulse function is intro-
duced. We choose not to take the strictly mathematical approach, however, in the
interest of using an approach based on logic and all the foregoing information
presented on interpolation functions.

For illustrative purposes, the heat source is assumed to be located at a known
point P = (x0, y0) in the interior of a three-node triangular element, as in Fig-
ure 7.14. If we know the temperature at each of the three nodes of the element,
then the temperature at point P is a weighted combination of the nodal tempera-
tures. By this point in the text, the reader is well aware that the weighting factors
are the interpolation functions. If nodal values are interpolated to a specific point,
a value at that point should properly be assigned to the nodes via the same inter-
polation functions evaluated at the point. Using this premise, the nodal forces for

1

2

P(x0, y0)

3

Figure 7.14
Concentrated heat
source Q* located at
point P(x0, y0) in a
triangular element.

(a)

Heat source

x

z

y

Figure 7.13
(a) Long, slender body with internal heat source.
(b) 2-D representation (unit thickness in
z-direction).

(b)

x

y
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the triangular element become (assuming Q∗ to be constant)

{

f (e)
Q

} = Q∗
∫∫

A







N1(x0, y0)
N2(x0, y0)
N3(x0, y0)






dA (7.57)

For a three-node triangular element, the interpolation functions (from Chapter 6)
are simply the area coordinates, so we now have

{

f (e)
Q

} = Q∗
∫∫

A







L1(x0, y0)
L2(x0, y0)
L3(x0, y0)






dA = Q∗ A







L1(x0, y0)
L2(x0, y0)
L3(x0, y0)






(7.58)

Now consider the “behavior” of the area coordinates as the position of the inte-
rior point P varies in the element. As P approaches node 1, for example, area
coordinate L 1 approaches unity value. Clearly, if the source is located at node 1,
the entire source value should be allocated to that node. A similar argument can
be made for each of the other nodes. Another very important point to observe
here is that the total heat generation as allocated to the nodes by Equation 7.58 is
equivalent to the source. If we sum the individual nodal contributions given in
Equation 7.58, we obtain

3∑

i=1

Q∗(e)
i =

3∑

i=1

(

L (e)
1 + L (e)

2 + L (e)
3

)

Q∗ A = Q∗ A (7.59)

since
3∑

i=1

Li = 1 is known by the definition of area coordinates.

The foregoing approach using logic and our knowledge of interpolation
functions is without mathematical rigor. If we approach the situation of a line
source mathematically, the result is exactly the same as that given by Equa-
tion 7.58 for the triangular element. For any element chosen, the force vector
corresponding to a line source (keep in mind that, in two-dimensions, this looks
like a point source) the nodal force contributions are

{

f (e)
Q

} = Q∗
∫∫

A

{N (x0, y0)} d A (7.60)

Thus, a source of internal heat generation is readily allocated to the nodes of a
finite element via the interpolation functions of the specific element applied.

7.5 HEAT TRANSFER WITH MASS TRANSPORT
The finite element formulations and examples previously presented deal with
solid media in which heat flows as a result of conduction and convection. An ad-
ditional complication arises when the medium of interest is a flowing fluid.
In such a case, heat flows by conduction, convection, and via motion of the
media. The last effect, referred to as mass transport, is considered here for the
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one-dimensional case. Figure 7.15a is essentially Figure 7.2a with a major phys-
ical difference. The volume shown in Figure 7.15a represents a flowing fluid (as
in a pipe, for example) and heat is transported as a result of the flow. The heat
flux associated with mass transport is denoted qm , as indicated in the figure. The
additional flux term arising from mass transport is given by

qm = ṁcT (W or Btu/hr) (7.61)

where ṁ is mass flow rate (kg/hr or slug/hr), c is the specific heat of the fluid
(W-hr/(kg-◦C) or Btu/(slug-◦F)), and T (x ) is the temperature of the fluid (◦C or
◦F). A control volume of length dx of the flow is shown in Figure 7.15b, where
the flux terms have been expressed as two-term Taylor series as in past deri-
vations. Applying the principle of conservation of energy (in analogy with
Equation 7.1),

qx A dt + qm dt + Q A dx dt = �U +
(

qx + dqx

dx
dx

)

A dt

+
(

qm + dqm

dx
dx

)

dt + qh P dx dt (7.62)

Considering steady-state conditions, �U = 0, using Equations 5.51 and 7.2 and
simplifying yields

d

dx

(

kx
dT

dx

)

+ Q = dqm

dx
+ hP

A
(T − Ta) (7.63)

where all terms are as previously defined. Substituting for qm into Equation 7.63,
we obtain

d

dx

(

kx
dT

dx

)

+ Q = d

dx

(
ṁc

A
T

)

+ hP

A
(T − Ta) (7.64)

which for constant material properties and constant mass flow rate (steady state)
becomes

kx
d2T

dx 2
+ Q = ṁc

A

dT

dx
+ hP

A
(T − Ta) (7.65)

(a)

qout

qin �qx �qm

Convection

Figure 7.15
(a) One-dimensional conduction with convection and mass transport. (b) Control volume for
energy balance.

(b)

qx �qm

dx

Q,
�U qx � dx �

dqx

dx
dxqm �

dqm

dx

qh
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With the exception of the mass transport term, Equation 7.65 is identical to
Equation 7.4. Consequently, if we apply Galerkin’s finite element method, the
procedure and results are identical to those of Section 7.3, except for additional
stiffness matrix terms arising from mass transport. Rather than repeat the deriva-
tion of known terms, we develop only the additional terms. If Equation 7.65
is substituted into the residual equations for a two-node linear element (Equa-
tion 7.6), the additional terms are

x2∫

x1

ṁc
dT

dx
Ni dx i = 1, 2 (7.66)

Substituting for T via Equation 7.5, this becomes
x2∫

x1

ṁc

[
dN1

dx
T1 + dN2

dx
T2

]

Ni dx i = 1, 2 (7.67)

Therefore, the additional stiffness matrix resulting from mass transport is

[kṁ] = ṁc

x2∫

x1







N1
dN1

dx
N1

dN2

dx

N2
dN1

dx
N2

dN2

dx







dx (7.68)

Explicitly evaluate the stiffness matrix given by Equation 7.68 for the two-node element. 

■ Solution
The interpolation functions are

N1 = 1 − x

L

N2 = x

L

and the required derivatives are

dN1

dx
= − 1

L

dN2

dx
= 1

L

Utilizing the change of variable s = x/L , Equation 7.68 becomes

[kṁ ] = ṁc

L

1∫

0

[−(1 − s) (1 − s)
−s s

]

L ds = ṁc







−1

2

1

2

−1

2

1

2







= ṁc

2

[−1 1
−1 1

]

and note that the matrix is not symmetric.

EXAMPLE 7.8
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Using the result of Example 7.8, the stiffness matrix for a one-dimensional
heat transfer element with conduction, convection, and mass transport is given
by

[

k (e)
] = kx A

L

[

1 −1
−1 1

]

+ h P L

6

[

2 1
1 2

]

+ ṁc

2

[

−1 1
−1 1

]

= [

k (e)
c

] + [

k (e)
h

] + [

k (e)
ṁ

]

(7.69)

where the conduction and convection terms are identical to those given in Equa-
tion 7.15. Note that the forcing functions and boundary conditions for the one-
dimensional problem with mass transport are the same as given in Section 7.3,
Equations 7.16 through 7.19.

Figure 7.16a shows a thin-walled tube that is part of an oil cooler. Engine oil enters the
tube at the left end at temperature 50◦C with a flow rate of 0.2 kg/min. The tube is sur-
rounded by air flowing at a constant temperature of 15◦C. The thermal properties of the
oil are as follows: 

Thermal conductivity: kx = 0.156 W/(m-◦C)

Specific heat: c = 0.523 W-hr/(kg-◦C)

The convection coefficient between the thin wall and the flowing air is h =
300 W/(m2-◦C). The tube wall thickness is such that conduction effects in the wall are to
be neglected; that is, the wall temperature is constant through its thickness and the same
as the temperature of the oil in contact with the wall at any position along the length of
the tube. Using four two-node finite elements, obtain an approximate solution for the tem-
perature distribution along the length of the tube and determine the heat removal rate via
convection.

■ Solution
The finite element model is shown schematically in Figure 7.16b, using equal length
elements L = 25 cm = 0.025 m. The cross-sectional area is A = (�/4)(20/1000)2 =

(a)

T �50� C

100 cm

Air, 15� C

m� m�
20 mm

Figure 7.16
(a) Oil cooler tube of Example 7.9. (b) Element and node numbers for a
four-element model.

(b)

1 2 3 4 5

1 2 3 4

EXAMPLE 7.9
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3.14(10−4) m2 . And the peripheral dimension (circumference) of each element is
P = �(20/1000) = 6.28(10−2) m. The stiffness matrix for each element (note that all
elements are identical) is computed via Equation 7.69 as follows:

[

k (e)
c

] = kx A

L

[

1 −1
−1 1

]

= 0.156(3.14)(10−4)

0.025

[

1 −1
−1 1

]

=
[

1.9594 −1.9594
−1.9594 1.9594

]

(10−3)

[

k (e)
h

] = h P L

6

[

2 1
1 2

]

= 300(6.28)(10−2)(0.025)

6

[

2 1
1 2

]

=
[

0.157 0.0785
0.0785 0.157

]

[

k (e)
ṁ

] = ṁc

2

[ −1 1
−1 1

]

= (0.2)(60)(0.523)

2

[ −1 1
−1 1

]

=
[ −3.138 3.138

−3.138 3.138

]

[

k (e)
] =

[ −2.9810 3.2165
−3.0595 3.2950

]

At this point, note that the mass transport effects dominate the stiffness matrix and we an-
ticipate that very little heat is dissipated, as most of the heat is carried away with the flow.
Also observe that, owing to the relative magnitudes, the conduction effects have been
neglected.

Assembling the global stiffness matrix via the now familiar procedure, we obtain

[K ] =









−2.9810 3.2165 0 0 0
−3.0595 0.314 3.2165 0 0

0 −3.0595 0.314 3.2165 0
0 0 −3.0595 0.314 3.2165
0 0 0 −3.0595 3.2950









The convection-driven forcing function for each element per Equation 7.18 is

{

f (e)
h

} = h P T a L

2

{

1
1

}

= 300(6.28)(10−2)(15)(0.025)

2

{

1
1

}

=
{

3.5325
3.5325

}

As there is no internal heat generation, the per-element contribution of Equation 7.16 is
zero. Finally, we must examine the boundary conditions. At node 1, the temperature is
specified but the heat flux q1 = F1 is unknown; at node 5 (the exit), the flux is also un-
known. Unlike previous examples, where a convection boundary condition existed, here
we assume that the heat removed at node 5 is strictly a result of mass transport. Physi-
cally, this means we define the problem such that heat transfer ends at node 5 and the
heat remaining in the flow at this node (the exit) is carried away to some other process.
Consequently, we do not consider either a conduction or convection boundary condition
at node 5. Instead, we compute the temperature at node 5 then the heat removed at this
node via the mass transport relation. In terms of the finite element model, this means
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that we do not consider the heat flow through node 5 as an unknown (reaction force).
With this in mind, we assemble the global force vector from the element force vectors
to obtain

{F} =







3.5325 + F1

7.065
7.065
7.065
3.5325







The assembled system (global) equations are then

[K ]{T } =









−2.9801 3.2165 0 0 0
−3.0595 0.314 3.2165 0 0

0 −3.0595 0.314 3.2165 0
0 0 −3.0595 0.314 3.2165
0 0 0 −3.0595 3.2950















T1

T2

T3

T4

T5







=







3.5325 + F1

7.065
7.065
7.065
3.5325







Applying the known condition at node 1, T = 50◦C, the reduced system equations
become







0.314 3.2165 0 0
−3.0595 0.314 3.2165 0

0 −3.0595 0.314 3.2165
0 0 −3.0595 3.2950













T2

T3

T4

T5







=







160.04
7.065
7.065
3.5325







which yields the solution for the nodal temperatures as






T2

T3

T4

T5







=







47.448
45.124
42.923
40.928







◦C

As conduction effects have been seen to be negligible, the input rate is computed as

qin = qm1 = ṁcT1 = 0.2(60)(0.523)(50) = 3138 W

while, at node 5, the output rate is

qm5 = ṁcT5 = 0.2(60)(0.523)(40.928) = 2568 .6 W

The results show that only about 18 percent of input heat is removed, so the cooler is not
very efficient.
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7.6 HEAT TRANSFER IN THREE DIMENSIONS
As the procedure has been established, the governing equation for heat transfer
in three dimensions is not derived in detail here. Instead, we simply present the
equation as

∂

∂x

(

kx
∂T

∂x

)

+ ∂

∂y

(

ky
∂T

∂y

)

+ ∂

∂ z

(

kz
∂T

∂ z

)

+ Q = 0 (7.70)

and note that only conduction effects are included and steady-state conditions are
assumed. In the three-dimensional case, convection effects are treated most effi-
ciently as boundary conditions, as is discussed.

The domain to which Equation 7.70 applies is represented by a mesh of finite
elements in which the temperature distribution is discretized as

T (x , y, z) =
M∑

i=1

Ni (x , y, z)Ti = [N ]{T } (7.71)

where M is the number of nodes per element. Application of the Galerkin method
to Equation 7.70 results in M residual equations:
∫∫∫

V

[
∂

∂x

(

kx
∂T

∂x

)

+ ∂

∂y

(

ky
∂T

∂y

)

+ ∂

∂ z

(

kz
∂T

∂ z

)

+ Q

]

Ni dV = 0

i = 1, . . . , M (7.72)

where, as usual, V is element volume.
In a manner analogous to Section 7.4 for the two-dimensional case, the

derivative terms can be written as

∂

∂x

(

kx
∂T

∂x

)

Ni = ∂

∂x

(

kx
∂T

∂x
Ni

)

− kx
∂T

∂x

∂ Ni

∂x

∂

∂y

(

ky
∂T

∂y

)

Ni = ∂

∂y

(

ky
∂T

∂y
Ni

)

− ky
∂T

∂y

∂ Ni

∂y

∂

∂ z

(

kz
∂T

∂ z

)

Ni = ∂

∂ z

(

kz
∂T

∂ z
Ni

)

− kz
∂T

∂ z

∂ Ni

∂ z

(7.73)

and the residual equations become
∫∫∫

V

[
∂

∂x

(

kx
∂T

∂x
Ni

)

+ ∂

∂y

(

ky
∂T

∂y
Ni

)

+ ∂

∂z

(

kz
∂T

∂z
Ni

)]

dV +
∫∫∫

V

QNi dV

=
∫∫∫

V

(

kx
∂T

∂x

∂Ni

∂x
+ ky

∂T

∂y

∂Ni

∂y
+ kz

∂T

∂z

∂Ni

∂z

)

dV i = 1, . . . , M (7.74)

The integral on the left side of Equation 7.74 contains a perfect differential
in three dimensions and can be replaced by an integral over the surface of the
volume using Green’s theorem in three dimensions: If F(x, y, z), G(x, y, z), and
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H(x, y, z) are functions defined in a region of xyz space (the element volume in
our context), then

∫∫∫

V

(
∂ F

∂x
+ ∂G

∂y
+ ∂ H

∂ z

)

dV =
∫∫

©
A

(Fnx + Gny + Hnz) d A (7.75)

where A is the surface area of the volume and nx , n y , nz are the Cartesian com-
ponents of the outward unit normal vector of the surface area. This theorem is the
three-dimensional counterpart of integration by parts discussed earlier in this
chapter.

Invoking Fourier’s law and comparing Equation 7.75 to the first term of
Equation 7.74, we have

−
∫∫

©
A

(qx nx + qyn y + qznz) Ni d A +
∫∫∫

V

Q Ni dV

=
∫∫∫

V

(

kx
∂T

∂x

∂ Ni

∂x
+ ky

∂T

∂y

∂ Ni

∂y
+ kz

∂T

∂ z

∂ Ni

∂ z

)

dV i = 1, . . . , M (7.76)

Inserting the matrix form of Equation 7.71 and rearranging, we have
∫∫∫

V

(

kx
∂ [N ]

∂x

∂ Ni

∂x
+ ky

∂ [N ]

∂y

∂ Ni

∂y
+ kz

∂ [N ]

∂ z

∂ Ni

∂ z

)

{T } dV

=
∫∫∫

V

Q Ni dV −
∫∫

©
A

(qx nx + qyn y + qznz) Ni d A i = 1, . . . , M (7.77)

Equation 7.77 represents a system of M algebraic equations in the M unknown
nodal temperatures {T}. With the exception that convection effects are not in-
cluded here, Equation 7.77 is analogous to the two-dimensional case represented
by Equation 7.34. In matrix notation, the system of equations for the three-
dimensional element formulation is

∫∫∫

V

(

kx
∂ [N ]T

∂x

∂ [N ]

∂x
+ ky

∂ [N ]

∂y

T ∂ [N ]

∂y
+ kz

∂ [N ]T

∂ z

∂ [N ]

∂ z

)

dV {T }

=
∫∫∫

V

Q[N ]T dV −
∫∫

©
A

(qx nx + qyn y + qznz)[N ]T d A (7.78)

and Equation 7.76 is in the desired form
[

k (e)
] {

T (e)
} = {

f (e)
Q

} + {

f (e)
q

}

(7.79)

Comparing the last two equations, the element conductance (stiffness) matrix is

[

k (e)
] =

∫∫∫

V

(

kx
∂ [N ]T

∂x

∂ [N ]

∂x
+ ky

∂ [N ]

∂y

T ∂ [N ]

∂y
+ kz

∂ [N ]T

∂ z

∂ [N ]

∂ z

)

dV

(7.80)
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the element force vector representing internal heat generation is

{

f (e)
Q

} =
∫∫∫

V

Q[N ]T dV (7.81)

and the element nodal force vector associated with heat flux across the element
surface area is

{

f (e)
q

} = −
∫∫

©
A

(qx nx + qyn y + qznz)[N ]T d A (7.82)

7.6.1 System Assembly and Boundary Conditions

The procedure for assembling the global equations for a three-dimensional
model for heat transfer analysis is identical to that of one- and two-dimensional
problems. The element type is selected (tetrahedral, brick, quadrilateral solid,
for example) based on geometric considerations, primarily. The volume is then
divided into a mesh of elements by first defining nodes (in the global coordinate
system) throughout the volume then each element by the sequence and number
of nodes required for the element type. Element-to-global nodal correspondence
relations are then determined for each element, and the global stiffness (con-
ductance) matrix is assembled. Similarly, the global force vector is assembled
by adding element contributions at nodes common to two or more elements.
The latter procedure is straightforward in the case of internal generation, as
given by Equation 7.81. However, in the case of the element gradient terms,
Equation 7.82, the procedure is best described in terms of the global boundary
conditions.

In the case of three-dimensional heat transfer, we have the same three types
of boundary conditions as in two dimensions: (1) specified temperatures,
(2) specified heat flux, and (3) convection conditions. The first case, specified
temperatures, is taken into account in the usual manner, by reducing the system
equations by simply substituting the known nodal temperatures into the system
equations. The latter two cases involve only elements that have surfaces (element
faces) on the outside surface of the global volume. To illustrate, Figure 7.17a
shows two brick elements that share a common face in an assembled finite ele-
ment model. For convenience, we take the common face to be perpendicular to
the x axis. In Figure 7.17b, the two elements are shown separately with the asso-
ciated normal vector components identified for the shared faces. For steady-state
heat transfer, the heat flux across the face is the same for each element and, since
the unit normal vectors are opposite, the gradient force terms cancel. The result
is completely analogous to internal forces in a structural problem via Newton’s
third law of action and reaction. Therefore, on interelement boundaries (which
are areas for three-dimensional elements), the element force terms defined by
Equation 7.82 sum to zero in the global assembly process.

What of the element surface areas that are part of the surface area of the vol-
ume being modeled? Generally, these outside areas are subjected to convection
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conditions. For such convection boundary conditions, the flux conditions of
Equation 7.82 must be in balance with the convection from the area of concern.
Mathematically, the condition is expressed as

{

f (e)
q

} = −
∫∫

©
A

(qx nx + qyn y + qznz)[N ]T d A = −
∫∫

©
A

qnn[N ]T d A

= −
∫∫

©
A

h
(

T (e) − Ta

)

[N ]T d A (7.83)

where qn is the flux normal to the surface area A of a specific element face on the
global boundary and n is the unit outward normal vector to that face. As in two-
dimensional analysis, the convection term in the rightmost integral of Equation
7.83 adds to the stiffness matrix when the expression for T (e) in terms of inter-
polation functions and nodal temperatures is substituted. Similarly, the ambient
temperature terms add to the forcing function vector.

In most commercial finite element software packages, the three-dimensional
heat transfer elements available do not explicitly consider the gradient force vec-
tor represented by Equation 7.82. Instead, such programs compute the system
(global) stiffness matrix on the basis of conductance only and rely on the user to
specify the flux or convection boundary conditions (and the specified tempera-
ture conditions, of course) as part of the loading (input) data.

(a)

x

z

y

1

2

Figure 7.17
(a) Common face in two 3-D elements. (b) Edge view of
common face, illustrating cancellation of conduction
gradient terms.

(b)

1

qx

�n1�(1, 0, 0)
x

2

qx

�n2 � (�1, 0, 0)
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Owing to the algebraic volume of calculation required, examples of general
three-dimensional heat transfer are not presented here. A few three-dimensional
problems are included in the end-of-chapter exercises and are intended to be
solved by digital computer techniques.

7.7 AXISYMMETRIC HEAT TRANSFER
Chapter 6 illustrated the approach for utilizing two-dimensional elements and
associated interpolation functions for axisymmetric problems. Here, we illustrate
the formulation of finite elements to solve problems in axisymmetric heat trans-
fer. Illustrated in Figure 7.18 is a body of revolution subjected to heat input at its
base, and the heat input is assumed to be symmetric about the axis of revolution.
Think of the situation as a cylindrical vessel heated by a source, such as a gas
flame. This situation could, for example, represent a small crucible for melting
metal prior to casting.

As an axisymmetric problem is three-dimensional, the basic governing
equation is Equation 7.70, restated here under the assumption of homogeneity, so
that kx = ky = kz = k , as

k

(
∂2T

∂x 2
+ ∂T 2

∂y2
+ ∂2T

∂ z2

)

+ Q = 0 (7.84)

Equation 7.84 is applicable to steady-state conduction only and is expressed
in rectangular coordinates. For axisymmetric problems, use of a cylindrical
coordinate system (r, 
, z) is much more amenable to formulating the problem.
To convert to cylindrical coordinates, the partial derivatives with respect to x and
y in Equation 7.84 must be converted mathematically into the corresponding par-
tial derivatives with respect to radial coordinate r and tangential (circumferential)

z

qz

r

Figure 7.18 An axisymmetric
heat transfer problem. All
properties and inputs are
symmetric about the z axis.
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coordinate 
. In the following development, we present the general approach but
leave the details as an end-of-chapter exercise.

The basic relations between the rectangular coordinates x, y and the cylin-
drical (polar) coordinates r, 
 are

x = r cos 


y = r sin 

(7.85)

and inversely,
r 2 = x 2 + y2

tan 
 = y

x

(7.86)

Per the chain rule of differentiation, we have

∂T

∂x
= ∂T

∂r

∂r

∂x
+ ∂T

∂


∂


∂x

∂T

∂y
= ∂T

∂r

∂r

∂y
+ ∂T

∂


∂


∂y

(7.87)

By implicit differentiation of Equation 7.86,

2r
∂r

∂x
= 2x ⇒ ∂r

∂x
= x

r
= cos 


2r
∂r

∂y
= 2y ⇒ ∂r

∂y
= y

r
= sin 


1

sec2 


∂


∂x
= − y

x 2
⇒ ∂


∂x
= − sin 


r

1

sec2 


∂


∂y
= 1

x
⇒ ∂


∂y
= cos 


r

(7.88)

so that Equation 7.87 becomes

∂T

∂x
= cos 


∂T

∂r
− sin 


r

∂T

∂


∂T

∂y
= sin 


∂T

∂r
+ cos 


r

∂T

∂


(7.89)

For the second partial derivatives, we have

∂2T

∂x 2
= ∂

∂x

(
∂T

∂x

)

= cos 

∂

∂r

(
∂T

∂x

)

− sin 


r

∂

∂


(
∂T

∂x

)

∂2T

∂y2
= ∂

∂y

(
∂T

∂y

)

= sin 

∂

∂r

(
∂T

∂y

)

+ cos 


r

∂

∂


(
∂T

∂y

) (7.90)
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Applying Equation 7.89 to the operations indicated in Equation 7.90 yields (with
appropriate use of trigonometric identities)

∂2T

∂x 2
+ ∂2T

∂y2
= ∂2T

∂r 2
+ 1

r

∂T

∂r
+ 1

r 2

∂2T

∂
2
(7.91)

where the derivation represents a general change of coordinates. To relate to an
axisymmetric problem, recall that there is no dependence on the tangential coor-
dinate 
. Consequently, when Equations 7.84 and 7.91 are combined, the gov-
erning equation for axisymmetric heat transfer is

k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)

+ Q = 0 (7.92)

and, of course, note the absence of the tangential coordinate.

7.7.1 Finite Element Formulation

Per the general procedure, the total volume of the axisymmetric domain is dis-
cretized into finite elements. In each element, the temperature distribution is
expressed in terms of the nodal temperatures and interpolation functions as

T (e) =
M∑

i=1

Ni (r, z)T (e)
i (7.93)

where, as usual, M is the number of element nodes. Note particularly that the
interpolation functions vary with radial coordinate r and axial coordinate z.
Application of Galerkin’s method using Equations 7.92 and 7.93 yields the
residual equations
∫∫∫

V

[

k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)

+ Q

]

Nir dr d
 dz = 0 i = 1, . . . , M

(7.94)

Observing that, for the axisymmetric case, the integrand is independent of the
tangential coordinate 
, Equation 7.94 becomes

2�

∫∫

A(e)

[

k

(
∂2T

∂r 2
+ 1

r

∂T

∂r
+ ∂2T

∂ z2

)

+ Q

]

Nir dr dz = 0 i = 1, . . . , M

(7.95)

where A(e) is the area of the element in the rz plane. The first two terms of the
integrand can be combined to obtain

2�

∫∫

A(e)

[

k

(
1

r

∂

∂r

(

r
∂T

∂r

)

+ ∂2T

∂ z2

)

+ Q

]

Nir dr dz = 0 i = 1, . . . , M

(7.96)
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Observing that r is independent of z, Equation 7.96 becomes

2�

∫∫

A(e)

[

k

[
∂

∂r

(

r
∂T

∂r

)

+ ∂

∂ z

(

r

(
∂T

∂ z

))]

+ Qr

]

Ni dr dz = 0

i = 1, . . . , M (7.97)

As in previous developments, we invoke the chain rule of differentiation as, for
example,

∂

∂r

(

r Ni
∂T

∂r

)

= Ni
∂

∂r

(

r
∂T

∂r

)

+ r
∂T

∂r

∂ Ni

∂r
⇒ Ni

∂

∂r

(

r
∂T

∂r

)

= ∂

∂r

(

r Ni
∂T

∂r

)

− r
∂T

∂r

∂ Ni

∂r
i = 1, . . . , M (7.98)

Noting that Equation 7.98 is also applicable to the z variable, the residual equa-
tions represented by Equation 7.97 can be written as

2�

∫∫

A(e)

k

[
∂

∂r

(

r Ni
∂T

∂r

)

+ ∂

∂ z

(

r Ni
∂T

∂ z

)]

dr dz + 2�

∫∫

A(E)

Q Nir dr dz

= 2�

∫∫

A(e)

k

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)

r dr dz i = 1, . . . , M (7.99)

The first integrand on the left side of Equation 7.99 is a perfect differential in two
dimensions, and the Green-Gauss theorem can be applied to obtain

2�

∮

S(e)

(

k
∂T

∂r
nr + k

∂T

∂ z
nz

)

r Ni dS + 2�

∫∫

A(e)

Q Nir dr dz

= 2�

∫∫

A(e)

k

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)

r dr dz i = 1, . . . , M (7.100)

where S is the boundary (periphery) of the element and nr and nz are the radial
and axial components of the outward unit vector normal to the boundary. Apply-
ing Fourier’s law in cylindrical coordinates,

qr = −k
∂T

∂r

qz = −k
∂T

∂ z

(7.101)

and noting the analogy with Equation 7.33, we rewrite Equation 7.100 as

2�k

∫∫

A(e)

(
∂T

∂r

∂ Ni

∂r
+ ∂T

∂ z

∂ Ni

∂ z

)

r dr dz

= 2�

∫∫

A(e)

Q Nir dr dz − 2�

∮

S(e)

qsns Nir dS i = 1, . . . , M (7.102)
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The common term 2� could be omitted, but we leave it as a reminder of the
three-dimensional nature of an axisymmetric problem. In particular, note that
this term, in conjunction with r in the integrand of the last integral on the right-
hand side of Equation 7.102, reinforces the fact that element boundaries are
actually surfaces of revolution.

Noting that Equation 7.102 represents a system of M equations, the form of
the system is that of

[

k (e)
] {

T (e)
} = {

f (e)
Q

} + {

f (e)
g

}

(7.103)

where [k (e)] is the element conductance matrix having individual terms defined
by

ki j = 2�k

∫∫

A(e)

(
∂ Ni

∂r

∂ Nj

∂r
+ ∂ Ni

∂ z

∂ Nj

∂ z

)

r dr dz i, j = 1, . . . , M (7.104)

and {T (e)} is the column matrix (vector) of element nodal temperatures per Equa-
tion 7.93. The element forcing functions include the internal heat generation
terms given by

{

f (e)
Q

} = 2�

∫∫

A(e)

Q {N } r dr dz (7.105)

and the boundary gradient (flux) components

{

f (e)
g

} = −2�

∮

S(e)

qsns {N } r dS (7.106)

As has been discussed for other cases, on boundaries common to two elements,
the flux terms are self-canceling in the model assembly procedure. Therefore,
Equation 7.106 is applicable to element boundaries on a free surface. For such sur-
faces, the boundary conditions are of one of the three types delineated in previous
sections: specified temperature, specified heat flux, or convection conditions.

Calculate the terms of the conductance matrix for an axisymmetric element based on the
three-node plane triangular element. 

■ Solution
The element and nodal coordinates are as shown in Figure 7.19. From the discussions in
Chapter 6, if we are to derive the interpolation functions from basic principles, we first
express the temperature variation throughout the element as

T (r, z) = a0 + a1r + a2z = N1(r, z)T1 + N2(r, z)T2 + N3(r, z)T3

apply the nodal conditions, and solve for the constants. Rearranging the results in terms
of nodal temperatures then reveals the interpolation functions. However, the results are
exactly the same as those of Chapter 6, if we simply replace x and y with r and z, so that

EXAMPLE 7.10
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the interpolation functions are of the form

N1(r, z) = 1

2 A(e)
(b1 + c1r + d1z)

N2(r, z) = 1

2 A(e)
(b2 + c2r + d2z)

N3(r, z) = 1

2 A(e)
(b3 + c3r + d3z)

where
b1 = r2z3 − r3z2 b2 = r3z1 − r1z3 b3 = r1z2 − r2z1

c1 = z2 − z3 c2 = z3 − z1 c3 = z1 − z2

d1 = r3 − r1 d2 = r1 − r3 d3 = r2 − r1

and A(e) is the area of the element in the rz plane.
Since the interpolation functions are linear, the partial derivatives are constants, so

Equation 7.102 becomes

ki j = 2�k

(
∂ Ni

∂r

∂ Nj

∂r
+ ∂ Ni

∂ z

∂ Nj

∂ z

) ∫∫

A(e)

r dr dz

= �k

2
(

A(e)
)2

(ci cj + di dj )

∫∫

A(e)

r dr dz i, j = 1, 3

Recalling from elementary statics that the integral in the last equation represents the first
moment of the area of the element about the z axis, we have

∫∫

A(e)

r dr dz = r̄ A(e)

where r̄ is the radial coordinate of the element centroid. The components of the conduc-
tance matrix are then 

ki j = �kr̄

2 A(e)
(ci cj + di dj ) i, j = 1, 3

and the symmetry of the conductance matrix is evident.

z

r

2
(r2, z2)

1
(r1, z1)

3
(r3, z3)

Figure 7.19 Cross section of
a three-node axisymmetric
element. Recall that the
element is a body of revolution.
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7.8 TIME-DEPENDENT HEAT TRANSFER
The treatment of finite element analysis of heat transfer has, to this point, been lim-
ited to cases of steady-state conditions. No time dependence is included in such
analyses, as we have assumed conditions such that a steady state is reached, and
the transient conditions are not of interest. Certainly, transient, time-dependent
effects are often quite important, and such effects determine whether a steady state
is achieved and what that steady state will be. To illustrate time-dependent heat
transfer in the context of finite element analysis, the one-dimensional case is
discussed here.

The case of one-dimensional conduction without convection is detailed in
Chapter 5. The governing equation, by consideration of energy balance in a con-
trol volume, Equation 5.54, is 

qx A dt + Q A dx dt = �U +
(

qx + ∂T

∂x
dx

)

A dt (7.107)

where the temperature distribution T (x , t ) is now assumed to be dependent on
both position and time. Further, the change in internal energy �U is not zero.
Rather, the increase in internal energy during a small time interval is described
by Equation 5.56, and the differential equation governing the temperature distri-
bution, Equation 5.58, is

kx
∂2T

∂x 2
+ Q = c�

∂T

∂ t
(7.108)

where c and � denote material specific heat and density, respectively, and t is
time. For time-dependent conduction, the governing equation is a second-order
partial differential equation with constant coefficients.

Application of the finite element method for solution of Equation 7.108
proceeds by dividing the problem domain into finite-length, one-dimensional
elements and discretizing the temperature distribution within each element as

T (x , t ) = N1(x )T1(t ) + N2(x )T2(t ) = [N (x )] {T (t )} (7.109)

which is the same as Equation 5.60 with the notable exception that the nodal tem-
peratures are functions of time.

Let us now apply Galerkin’s finite element method to Equation 7.108 to
obtain the residual equations

x2∫

x1

(

kx
∂2T

∂x 2
+ Q − c�

∂T

∂ t

)

Ni (x ) A dx i = 1, 2 (7.110)

Noting that

Ni
∂2T

∂x 2
= ∂

∂x

(

Ni
∂T

∂x

)

− ∂ Ni

∂x

∂T

∂x
(7.111)
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the residual equations can be rearranged and expressed as
x2∫

x1

kx
∂ Ni

∂x

∂T

∂x
A dz +

x2∫

x1

c�
∂T

∂ t
Ni A dx

=
x2∫

x1

Q Ni A dx +
x2∫

x1

kx
∂

∂x

(

Ni
∂T

∂x

)

A dx i = 1, 2 (7.112)

Comparing Equation 7.112 to Equations 5.63 and 5.64, we observe that the first
integral on the left includes the conductance matrix, the first integral on the right
is the forcing function associated with internal heat generation, and the second
integral on the right represents the gradient boundary conditions. Utilizing Equa-
tion 7.109, Equation 7.112 can be written in detailed matrix form as

c � A

x2∫

x1

[

N1

N2

]

[N1 N2] dx

{

Ṫ1

Ṫ2

}

+ kx A

x2∫

x1







dN1

dx
dN2

dx







[

dN1

dx

dN2

dx

]

dx

{

T1(t )
T2(t )

}

= { fQ} + { fg} (7.113)

where the dot denotes differentiation with respect to time. Note that the deriva-
tives of the interpolation functions have now been expressed as ordinary deriva-
tives, as appropriate. Equation 7.113 is most often expressed as

[

C (e)
]{

Ṫ (e)
} + [

k (e)
]{

T (e)
} = {

f (e)
Q

} + {

f (e)
g

}

(7.114)

where [C (e)] is the element capacitance matrix defined by

[

C (e)
] = c � A

x2∫

x1

[

N1

N2

]

[N1 N2] dx = c � A

x2∫

x1

[N ]T [N ] dx (7.115)

and, as implied by the name, indicates the capacity of the element for heat stor-
age. The capacitance matrix defined by Equation 7.115 is known as the consis-
tent capacitance matrix. The consistent capacitance matrix is so called because
it is formulated on the basis of the same interpolation functions used to describe
the spatial distribution of temperature. In our approach, using Galerkin’s method,
the consistent matrix is a natural result of the mathematical procedure. An alter-
nate approach produces a so-called lumped capacitance matrix. Whereas the con-
sistent matrix distributes the capacitance throughout the element by virtue of the
interpolation functions, the lumped capacitance matrix ascribes the storage
capacity strictly to the nodes independently. The difference in the two ap-
proaches is discussed in terms of heat transfer and, in more detail, in Chapter 10
in the context of structural dynamics.
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The model assembly procedure for a transient heat transfer problem is ex-
actly the same as for a steady-state problem, with the notable exception that we
must also assemble a global capacitance matrix. The rules are the same. Element
nodes are assigned to global nodes and the element capacitance matrix terms are
added to the appropriate global positions in the global capacitance matrix, as
with the conductance matrix terms. Hence, on system assembly, we obtain the
global equations

[C ]{Ṫ } + [K ]{T } = {FQ} + {Fg} (7.116)

where we must recall that the gradient force vector {Fg} is composed of either
(1) unknown heat flux values to be determined (unknown reactions) or (2) con-
vection terms to be equilibrated with the flux at a boundary node.

7.8.1 Finite Difference Methods for the Transient
Response: Initial Conditions

The finite element discretization procedure has reduced the one-dimensional
transient heat transfer problem to algebraic terms in the spatial variable via the
interpolation functions. Yet Equation 7.116 represents a set of ordinary, coupled,
first-order differential equations in time. Consequently, as opposed to the steady-
state case, there is not a solution but multiple solutions as the system responds
to time-dependent conditions. The boundary conditions for a transient problem
are of the three types discussed for the steady-state case: specified nodal tem-
peratures, specified heat flux, or convection conditions. However, note that the
boundary conditions may also be time dependent. For example, a specified nodal
temperature could increase linearly with time to some specified final value. In
addition, an internal heat generation source Q may also vary with time.

A commonly used approach to obtaining solutions for ordinary differential
equations of the form of Equation 7.116 is the finite difference method. As dis-
cussed briefly in Chapter 1, the finite difference method is based on approximat-
ing derivatives of a function as incremental changes in the value of the function
corresponding to finite changes in the value of the independent variable. Recall
that the first derivative of a function f (t ) is defined by

ḟ = d f

dt
= lim

�t→0

f (t + �t ) − f (t )

�t
(7.117)

Instead of requiring �t to approach zero, we obtain an approximation to the
value of the derivative by using a small, nonzero value of �t to obtain

ḟ ∼= f (t + �t ) − f (t )

�t
(7.118)

and the selected value of �t is known as the time step.
To apply the procedure to transient heat transfer, we approximate the time

derivative of the nodal temperature matrix as

{Ṫ } ∼= {T (t + �t )} − {T (t )}
�t

(7.119)
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Substituting, Equation 7.116 becomes

[C ]
{T (t + �t )} − {T (t )}

�t
+ [K ]{T (t )} = {FQ(t )} + {Fg(t )} (7.120)

Note that, if the nodal temperatures are known at time t and the forcing functions
are evaluated at time t, Equation 7.120 can be solved, algebraically, for the nodal
temperatures at time t + �t . Denoting the time at the ith time step as ti = i (�t ),
i = 0, 1, 2, . . . , we obtain

[C ] {T (ti+1)} = [C ] {T (ti )} − [K ] {T (ti )} �t + {FQ(ti )}�t + {Fg(ti )}�t

(7.121)

as the system of algebraic equations that can be solved for {T (ti+1)}. Formally,
the solution is obtained by multiplying Equation 7.121 by the inverse of the
capacitance matrix. For large matrices common to finite element models, invert-
ing the matrix is very inefficient, so other techniques such as Gaussian elimina-
tion are more often used. Note, however, that the system of algebraic equations
given by Equation 7.121 must be solved only once to obtain an explicit solution
for the nodal temperatures at time ti+1.

The method just described is known as a forward difference scheme (also
known as Euler’s method) and Equation 7.121 is a two-point recurrence rela-
tion. If the state of the system (nodal temperatures and forcing functions) is
known at one point in time, Equation 7.121 gives the state at the next point in
time. Solving the system sequentially at increasing values of the independent
variable is often referred to as marching in time. To begin the solution proce-
dure, the state of the system must be known at t = 0. Therefore, the initial con-
ditions must be specified in addition to the applicable boundary conditions.
Recall that the general solution to an ordinary, first-order differential equation
contains one constant of integration. As we have one such equation correspond-
ing to each nodal temperature, the value of each nodal temperature must be
specified at time zero. If the initial conditions are so known, the recurrence rela-
tion can be used to compute succeeding nodal temperatures. Prior to discussing
other schemes and the ramifications of time step selection, the following simple
example is presented.

Figure 7.20a shows a cylindrical rod having diameter of 12 mm and length of 100 mm.
The pin is of a material having thermal conductivity 230 W/(m-◦C), specific heat
900 J/(kg-◦C), and density 2700 kg/m3. The right-hand end of the rod is held in contact
with a medium at a constant temperature of 30◦C. At time zero, the entire rod is at a tem-
perature of 30◦C when a heat source is applied to the left end, bringing the temperature of
the left end immediately to 80◦C and maintaining that temperature indefinitely. Using the
forward difference method and four two-node elements, determine both transient and
steady-state temperature distributions in the rod. No internal heat is generated.

EXAMPLE 7.11
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■ Solution
In the solution for this example, we set up the general procedure then present the results
for one solution using one time step for the transient portion. The node numbers and
element numbers are as shown in Figure 7.20b. Since the length and area of each element
are the same, we compute the element capacitance matrix as

[

C (e)
] = c� AL

6

[

2 1
1 2

]

=
900(2700)

�

4
(0.012)2(0.025)

6

[

2 1
1 2

]

=
[

2.2902 1.1451
1.1451 2.2902

]

J/◦C

where we have implicitly performed the integrations indicated in Equation 7.115 and
leave the details as an end-of-chapter exercise. Similarly, the element conductance
matrix is

[

k (e)
] = k A

L

[

1 −1
−1 1

]

=
200

�

4
(0.012)2

0.025

[

1 −1
−1 1

]

=
[

0.9408 −0.9408
−0.9408 0.9408

]

W/◦C

For the one-dimensional case with uniform geometry and material properties, the system
assembly is straightforward and results in the global matrices

[C] =










2.2902 1.1451 0 0 0
1.1451 4.5804 1.1451 0 0

0 1.1451 4.5804 1.1451 0
0 0 1.1451 4.5804 1.1451
0 0 0 1.1451 2.2902










[K ] =










0.9408 −0.9408 0 0 0
−0.9408 1.8816 −0.9408 0 0

0 −0.9408 1.8816 −0.9408 0
0 0 −0.9408 1.8816 −0.9408
0 0 0 −0.9408 0.9408










As no internal heat is generated {FQ } = 0 and, as we have specified boundary tempera-
tures, the flux forcing term is an unknown. Note that, in the transient case, the flux terms

(a)

Insulated

30� C
T �30� C, t � 0
T �80� C, t 
 0

L

d

Figure 7.20
(a) Cylindrical rod of Example 7.11. (b) Node and element numbers.

(b)

1 5432

1 2 3 4

25 mm
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at the boundaries (the “reactions”) are time dependent and can be computed at each time
step, as will be explained. Hence, the gradient “force vector” is

{Fg} =







q1 A
0
0
0

−q5 A







Having taken care of the boundary conditions, we now consider the initial conditions
and examine the totality of the conditions on the solution procedure. It should be
clear that, since we have the temperature of two nodes specified, the desired solution
should provide the temperatures of the other three nodes and, therefore, should be a
3 × 3 system. The reduction to the 3 × 3 system is accomplished via the following
observations:

1. If T1 = 80◦C = constant, then Ṫ1 = 0.

2. If T5 = 30◦C = constant, then Ṫ5 = 0.

The equations can be modified accordingly. In this example, the general equations
become

[C]







0
Ṫ2

Ṫ3

Ṫ4

0







+ [K ]







80
T2

T3

T4

30







=







q1 A
0
0
0

−q5 A







Consequently, the first and fifth equations become

1.1451 Ṫ2 + 0.9408(80) − 0.9408 T2 = q1 A

1.1451 Ṫ4 − 0.9408 T4 + 0.9408(30) = −q5 A

respectively. The three remaining equations are then written as





4.5804 1.1451 0
1.1451 4.5804 1.1451

0 1.1451 4.5804











Ṫ2

Ṫ3

Ṫ4






+





1.8816 −0.9408 0
−0.9408 1.8816 −0.9408

0 −0.9408 1.8816











T2

T3

T4







=






75.264
0

28.224







For this example, the capacitance matrix is inverted (using a spreadsheet program) to
obtain

[C]−1 =




0.2339 −0.0624 0.0156
−0.0624 0.2495 −0.0624
0.0156 −0.0624 0.2339




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where [C] now represents the reduced 3 × 3 capacitance matrix. Utilizing Equation 7.121
and multiplying by [C ]−1 yields






T2

T3

T4







i+1

=






T2

T3

T4







i

−




0.4988 −0.3521 0.0880
−0.3521 0.5869 −0.3521
0.0880 −0.3521 0.4988











T2

T3

T4







i

�t +






18.0456
−6.4558
7.7762






�t

as the two-point recurrence relation.
Owing to the small matrix involved, the recurrence relation was programmed into a

standard spreadsheet program using time step �t = 0.1 sec. Calculations for nodal tem-
peratures T2, T3 , and T4 are carried out until a steady state is reached. Time histories of
each of the nodal temperature are shown in Figure 7.21. The figure shows that steady-
state conditions T2 = 67.5◦C, T3 = 55◦C, and T4 = 42.5◦C are attained in about 30 sec.
Interestingly, the results also show that the temperatures of nodes 3 and 4 initially
decrease. Such phenomena are physically unacceptable and associated with use of a con-
sistent capacitance matrix, as is discussed in Chapter 10.

7.8.2 Central Difference and Backward
Difference Methods

The forward difference method discussed previously and used in Example 7.11
is but one of three commonly used finite difference methods. The others are the
backward difference method and the central difference method. Each of these is
discussed in turn and a single two-point recurrence relation is developed incor-
porating the three methods.

In the backward difference method, the finite approximation to the first
derivative at time t is expressed as

Ṫ (t ) ∼= T (t ) − T (t − �t )

�t
(7.122)

5
20

30

40

50

60

70

10
t, sec

T4

T3

T2

T
 (

� 
C

)

15 20 25

Figure 7.21 Time histories of the nodal
temperatures.
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so that we, in effect, look back in time to approximate the derivative during the
previous time step. Substituting this relation into Equation 7.116 gives

[C]
{T (t)} − {T (t − �t)}

�t
+ [K ]{T (t)} = {FQ(t)} + {Fg(t)} (7.123)

In this method, we evaluate the nodal temperatures at time t based on the state of
the system at time t − �t , so we introduce the notation t = ti , ti−1 = t − �t ,
i = 1, 2, 3, . . . . Using the described notation and rearranging, Equation 7.123
becomes

([C] + [K ]�t){T (ti )} = [C]{T (ti−1)} + FQ(ti )�t + Fg(ti )�t i = 1, 2, 3, . . .

(7.124)

If the nodal temperatures are known at time ti−1, Equation 7.124 can be solved
for the nodal temperatures at the next time step (it is assumed that the forcing
functions on the right-hand side are known and can be determined at ti ). Noting
that the time index is relative, Equation 7.125 can also be expressed as

([C ] + [K ]�t ) {T (ti+1)}
= [C ] {T (ti )} + FQ(ti )�t + Fg(ti )�t i = 0, 1, 2, . . . (7.125)

If we compare Equation 7.125 with Equation 7.121, we find that the major dif-
ference lies in the treatment of the conductance matrix. In the latter case, the
effects of conductance are, in effect, updated during the time step. In the case of
the forward difference method, Equation 7.121, the conductance effects are held
constant at the previous time step. We also observe that Equation 7.125 cannot be
solved at each time step by “simply” inverting the capacitance matrix. The coef-
ficient matrix on the left-hand side changes at each time step; therefore, more
efficient methods are generally used to solve Equation 7.125.

Another approach to approximation of the first derivative is the central differ-
ence method. As the name implies, the method is a compromise of sorts between
forward and backward difference methods. In a central difference scheme, the
dependent variable and all forcing functions are evaluated at the center (midpoint)
of the time step. In other words, average values are used. In the context of transient
heat transfer, the time derivative of temperature is still as approximated by Equa-
tion 7.119 but the other terms in Equation 7.120 are evaluated at the midpoint of
the time step. Using this approach, Equation 7.120 becomes

[C ]
{T (t + �t )} − {T (t )}

�t
+ [K ]

{
T (t + �t ) + T (t )

2

}

=
{

FQ(t + �t ) + FQ(t )

2

}

+
{

Fg(t + �t ) + Fg(t )

2

}

(7.126)

The forcing functions on the right-hand side of Equation 7.126 are either known
functions and can be evaluated or “reactions,” which are subsequently computed
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via the constraint equations. The left-hand side of Equation 7.126 is now, however,
quite different, in that the unknowns at each step Ti (t + �t ) appear in both capac-
itance and conductance terms. Multiplying by �t and rearranging Equation 7.126,
we obtain
(

[C ] + [K ]
�t

2

)

{T (t + �t )}

=
(

[C] − [K ]
�t

2

)

{T (t)} +
{

FQ(t + �t) + FQ(t)

2

}

+
{

Fg(t + �t) + Fg(t)

2

}

(7.127)

Equation 7.127 can be solved for the unknown nodal temperatures at time t + �t
and the “marching” solution can progress in time until a steady state is reached.
The central difference methods is, in general, more accurate than the forward or
backward difference method, in that it does not give preference to either temper-
atures at t or t + �t but, rather, gives equal credence to both.

In finite difference methods, the key parameter governing solution accuracy
is the selected time step �t . In a fashion similar to the finite element method, in
which the smaller the elements are, physically, the better is the solution, the finite
difference method converges more rapidly to the true solution as the time step
is decreased. These ideas are amplified in Chapter 10, when we examine the
dynamic behavior of structures.

7.9 CLOSING REMARKS
In Chapter 7, we expand the application of the finite element method into two-
and three-dimensional, as well as axisymmetric, problems in heat transfer. While
the majority of the chapter focuses on steady-state conditions, we also present
the finite difference methods commonly used to examine transient effects. The
basis of our approach is the Galerkin finite element method, and this text stays
with that procedure, as it is so general in application. As we proceed into appli-
cations in fluid mechanics, solid mechanics, and structural dynamics in the fol-
lowing chapters, the Galerkin method is the basis for the development of many
of the finite element models.
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PROBLEMS
7.1 For Example 7.1, determine the exact solution by integrating Equation 5.59 and

applying the boundary conditions to evaluate the constants of integration.
7.2 Verify the convection-related terms in Equation 7.15 by direct integration.
7.3 For the data given in Example 7.4, use Gaussian quadrature with four integration

points (two on r, two on s) to evaluate the terms of the stiffness matrix. Do your
results agree with the values given in the example?

7.4 Using the computed nodal temperatures and heat flux values calculated in
Example 7.5, perform a check calculation on the heat flow balance. That is,
determine whether the heat input is in balance with the heat loss due to convection.
How does this check indicate the accuracy of the finite element solution?

7.5 Consider the circular heat transfer pin shown in Figure P7.5. The base of the pin
is held at constant temperature of 100◦C (i.e., boiling water). The tip of the pin
and its lateral surfaces undergo convection to a fluid at ambient temperature Ta .
The convection coefficients for tip and lateral surfaces are equal. Given kx =
380 W/m-◦C, L = 8 cm, h = 2500 W/m2-◦C, d = 2 cm, Ta = 30◦C. Use a two-
element finite element model with linear interpolation functions (i.e., a two-node
element) to determine the nodal temperatures and the heat removal rate from the
pin. Assume no internal heat generation.

Figure P7.5

7.6 Repeat Problem 7.5 using four elements. Is convergence indicated? 
7.7 The pin of Figure P7.5 represents a heating unit in a water heater. The base of the

pin is held at fixed temperature 30◦C. The pin is surrounded by flowing water at
55◦C. Internal heat generation is to be taken as the constant value Q = 25 W/cm3.
All other data are as given in Problem 7.5. Use a two-element model to determine
the nodal temperatures and the net heat flow rate from the pin.

7.8 Solve Problem 7.5 under the assumption that the pin has a square cross section
1 cm × 1 cm . How do the results compare in terms of heat removal rate?

7.9 The efficiency of the pin shown in Figure P7.5 can be defined in several ways.
One way is to assume that the maximum heat transfer occurs when the entire pin
is at the same temperature as the base (in Problem 7.5, 100◦C), so that
convection is maximized. We then write

qmax =
L∫

0

h P (Tb − Ta ) dx + h A(Tb − Ta )

where Tb represents the base temperature, P is the peripheral dimension, and A
is cross-sectional area at the tip. The actual heat transfer is less than qmax , so we

L

h, Ta

h, Ta100� C
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define efficiency as

� = qact

qmax

Use this definition to determine the efficiency of the pin of Problem 7.5.
7.10 Figure P7.10 represents one tube of an automotive engine’s radiator. The

engine coolant is circulated through the tube at a constant rate determined by
the water pump. Cooling is primarily via convection from flowing air around
the tube as a result of vehicle motion. Coolant enters the tube at a temperature
of 195◦F and the flow rate is 0.3 gallons per minute (specific weight is
68.5 lb/ft3). The physical data are as follows: L = 18 in., d = 0.3125 in.,
kx = 225 Btu/hr-ft-◦F, h = 37 Btu/ft2-hr-◦F. Determine the stiffness matrix
and load vector for an element of arbitrary length to use in modeling this
problem, assuming steady-state conditions. Is the assumption of steady-state
conditions reasonable?

Figure P7.10

7.11 Use the results of Problem 7.10 to model the tube with four equal length
elements and determine the nodal temperatures and the total heat flow from
surface convection.

7.12 Consider the tapered heat transfer pin shown in Figure P7.12a. The base of the
pin is held at constant temperature Tb , while the lateral surfaces and tip are
surrounded by a fluid media held at constant temperature Ta . Conductance kx

and the convection coefficient h are known constants. Figure P7.12b shows the
pin modeled as four tapered finite elements. Figure P7.12c shows the pin
modeled as four constant cross-section elements with the area of each element
equal to the average area of the actual pin. What are the pros and cons of the two
modeling approaches? Keep in mind that use of four elements is only a starting

t �0.03 in.

Tair �20� C

m�

d

L
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point, many more elements are required to obtain a convergent solution. How
does the previous statement affect your answer?

Figure P7.12

7.13 A cylindrical pin is constructed of a material for which the thermal conductivity
decreases with temperature according to

kx = k0 − cT

and c is a positive constant. For this situation, show that the governing equation
for steady-state, one-dimensional conduction with convection is

k0
d2 T

dx 2
− d

dx

(

cT
dT

dx

)

+ Q = h P

A
(T − Ta )

7.14 The governing equation for the situation described in Problem 7.13 is nonlinear.
If the Galerkin finite element method is applied, an integral of the form

x2∫

x1

Ni
d

dx

(

cT
dT

dx

)

dx

appears in the conductance matrix formulation. Integrate this term by parts and
discuss the results in terms of boundary flux conditions and the conductance
matrix.

7.15 A vertical wall of “sandwich” construction shown in Figure P7.15a is held at
constant temperature T1 = 68◦F on one surface and T2 = 28◦F on the other
surface. Using only three elements (one for each material), as in Figure P7.15b,
determine the nodal temperatures and heat flux through the wall per unit area.
The dimensions of the wall in the y and z directions are very large in comparison
to wall thickness.

1 2 3 4 5

(c)

1 2 3 4 5

(b)

(a)

h, Ta

h, TaTb
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Figure P7.15

7.16 The wall of Problem 7.15 carries a centrally located electrical cable, which is
to be treated as a line heat source of strength Q∗ = constant , as shown in
Figure P7.16. With this change, can the problem still be treated as one
dimensional? If your answer is yes, solve the problem using three elements
as in Problem 7.15. If your answer is no, explain.

Figure P7.16

7.17 A common situation in polymer processing is depicted in Figure P7.17, which
shows a “jacketed” pipe. The inner pipe is stainless steel having thermal
conductivity k; the outer pipe is carbon steel and assumed to be perfectly
insulated. The annular region between the pipes contains a heat transfer medium
at constant temperature T1 . The inner pipe contains polymer material flowing

Q*

(b)

1
2 3

4
1 2 3

(a)

5�8 in. 5�8 in.2 in.

ba c xT2T1

Figure P7.17

Carbon steel

Stainless steel

Flow R

t

T1

x
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at constant mass flow rate ṁ . The convection coefficient between the stainless
steel pipe wall and the polymer is h. Polymer specific heat c is also taken to be
constant. Is this a one-dimensional problem? How would you solve this problem
using the finite element method?

7.18 An office heater (often incorrectly called a radiator, since the heat transfer mode
is convection) is composed of a central pipe containing heated water at constant
temperature, as depicted in Figure P7.18. Several two-dimensional heat transfer
fins are attached to the pipe as shown. The fins are equally spaced along the
length of the pipe. Each fin has thickness of 0.125 in. and overall dimensions
4 in. × 4 in. Convection from the edges of the fins can be neglected. Consider the
pipe as a point source Q∗ = 600 Btu/hr-ft2 and determine the net heat transfer to
the ambient air at 20◦C, if the convection coefficient is h = 300 Btu/(hr-ft2-◦F).
Use four finite elements with linear interpolation functions (consider symmetry
conditions here).

Figure P7.18

7.19 One who seriously considers the symmetry conditions of Problem 7.18 would
realize that quarter symmetry exists and four elements represent 16 elements in
the full problem domain. What are the boundary conditions for the symmetric
model?

7.20 The rectangular fins shown in Figure P7.20 are mounted on a centrally located
pipe carrying hot water. Temperature at the contact surface between fin and
pipe is a constant T1 . For each case depicted, determine the applicable symmetry
conditions and the boundary conditions applicable to a finite element model.

Figure P7.20

(d)

T1

T2

(c)

Ta

TaTa Ta

T1

T2

(b)

Ta Ta

(a)
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Note that the cross-hatched edges are perfectly insulated and it is assumed that
the convection coefficients on all surfaces is the same constant.

7.21 Solve Example 7.5 using the two-element model in Figure 7.11b. How do the
results compare to those of the four-element model?

7.22 The rectangular element shown in Figure P7.22 contains a line source of constant
strength Q∗ located at the element centroid. Determine { f (e)

Q }.

Figure P7.22

7.23 Determine the forcing function components of { f (e)
Q } for the axisymmetric

element of Example 7.10 for the case of uniform internal heat generation Q.
7.24 A steel pipe (outside diameter of 60 mm and wall thickness of 5 mm) contains

flowing water at constant temperature 80◦C, as shown in Figure P7.24. The
convection coefficient between the water and pipe is 2000 W/m2-◦C. The pipe
is surrounded by air at 20◦C, and the convection at the outer pipe surface is
20 W/m2-◦C. The thermal conductivity of the pipe material is 60 W/m-◦C.
Determine the stiffness matrices and nodal forcing functions for the two
axisymmetric elements shown.

Figure P7.24

z

r

Flow

1 2 2.5 mm

2.5 mm

4

1 2

3

(2, 2)

Q*

(4, 2)

(4, 4)(2, 4)

y

x
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7.25 Assemble the global equations for the two elements of Problem 7.24. Use the
global node numbers shown in Figure P7.25. Compute the nodal temperatures,
and find the net heat flow (per unit surface area) into the surrounding air.

Figure P7.25

7.26 Solve the problem of Example 7.11 using a time step �t = 0.01 sec. How do the
results compare to those of the example solution?

1

1 2 3

4 5 6

2


