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C H A P T E R 3
Truss Structures:
The Direct Stiffness
Method

3.1 INTRODUCTION
The simple line elements discussed in Chapter 2 introduced the concepts of
nodes, nodal displacements, and element stiffness matrices. In this chapter, cre-
ation of a finite element model of a mechanical system composed of any number
of elements is considered. The discussion is limited to truss structures, which we
define as structures composed of straight elastic members subjected to axial
forces only. Satisfaction of this restriction requires that all members of the truss
be bar elements and that the elements be connected by pin joints such that each
element is free to rotate about the joint. Although the bar element is inherently
one dimensional, it is quite effectively used in analyzing both two- and three-
dimensional trusses, as is shown.

The global coordinate system is the reference frame in which displace-
ments of the structure are expressed and usually chosen by convenience in con-
sideration of overall geometry. Considering the simple cantilever truss shown in
Figure 3.1a, it is logical to select the global XY axes as parallel to the predomi-
nant geometric “axes” of the truss as shown. If we examine the circled joint, for
example, redrawn in Figure 3.1b, we observe that five element nodes are physi-
cally connected at one global node and the element x axes do not coincide with
the global X axis. The physical connection and varying geometric orientation
of the elements lead to the following premises inherent to the finite element
method:

1. The element nodal displacement of each connected element must be the
same as the displacement of the connection node in the global coordinate
system; the mathematical formulation, as will be seen, enforces this
requirement (displacement compatibility).
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Figure 3.1
(a) Two-dimensional truss composed of ten elements. (b) Truss joint connecting five
elements.

2. The physical characteristics (in this case, the stiffness matrix and element
force) of each element must be transformed, mathematically, to the global
coordinate system to represent the structural properties in the global system
in a consistent mathematical frame of reference.

3. The individual element parameters of concern (for the bar element, axial
stress) are determined after solution of the problem in the global coordinate
system by transformation of results back to the element reference frame
(postprocessing).

Why are we basing the formulation on displacements? Generally, a design
engineer is more interested in the stress to which each truss member is subjected,
to compare the stress value to a known material property, such as the yield
strength of the material. Comparison of computed stress values to material prop-
erties may lead to changes in material or geometric properties of individual ele-
ments (in the case of the bar element, the cross-sectional area). The answer to the
question lies in the nature of physical problems. It is much easier to predict the
loading (forces and moments) to which a structure is subjected than the deflec-
tions of such a structure. If the external loads are specified, the relations between
loads and displacements are formulated in terms of the stiffness matrix and we
solve for displacements. Back-substitution of displacements into individual ele-
ment equations then gives us the strains and stresses in each element as desired.
This is the stiffness method and is used exclusively in this text. In the alternate
procedure, known as the flexibility method [1], displacements are taken as the
known quantities and the problem is formulated such that the forces (more gen-
erally, the stress components) are the unknown variables. Similar discussion ap-
plies to nonstructural problems. In a heat transfer situation, the engineer is most
often interested in the rate of heat flow into, or out of, a particular device. While
temperature is certainly of concern, temperature is not the primary variable of
interest. Nevertheless, heat transfer problems are generally formulated such that
temperature is the primary dependent variable and heat flow is a secondary,
computed variable in analogy with strain and stress in structural problems.

Returning to consideration of Figure 3.1b, where multiple elements are con-
nected at a global node, the geometry of the connection determines the relations
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between element displacements and global displacements as well as the contribu-
tions of individual elements to overall structural stiffness. In the direct stiffness
method, the stiffness matrix of each element is transformed from the element
coordinate system to the global coordinate system. The individual terms of each
transformed element stiffness matrix are then added directly to the global stiffness
matrix as determined by element connectivity (as noted, the connectivity relations
ensure compatibility of displacements at joints and nodes where elements are
connected). For example and simply by intuition at this point, elements 3 and 7 in
Figure 3.1b should contribute stiffness only in the global X direction; elements 2
and 6 should contribute stiffness in both X and Y global directions; element 4
should contribute stiffness only in the global Y direction. The element transfor-
mation and stiffness matrix assembly procedures to be developed in this chapter
indeed verify the intuitive arguments just made.

The direct stiffness assembly procedure, subsequently described, results in
exactly the same system of equations as would be obtained by a formal equilib-
rium approach. By a formal equilibrium approach, we mean that the equilibrium
equations for each joint (node) in the structure are explicitly expressed, including
deformation effects. This should not be confused with the method of joints [2],
which results in computation of forces only and does not take displacement into
account. Certainly, if the force in each member is known, the physical properties
of the member can be used to compute displacement. However, enforcing com-
patibility of displacements at connections (global nodes) is algebraically tedious.
Hence, we have another argument for the stiffness method: Displacement com-
patibility is assured via the formulation procedure. Granted that we have to
“backtrack” to obtain the information of true interest (strain, stress), but the back-
tracking is algebraic and straightforward, as will be illustrated.

3.2 NODAL EQUILIBRIUM EQUATIONS
To illustrate the required conversion of element properties to a global coordinate
system, we consider the one-dimensional bar element as a structural member of a
two-dimensional truss. Via this relatively simple example, the assembly procedure
of essentially any finite element problem formulation is illustrated. We choose
the element type (in this case we have only one selection, the bar element); spec-
ify the geometry of the problem (element connectivity); formulate the algebraic
equations governing the problem (in this case, static equilibrium); specify the
boundary conditions (known displacements and applied external forces); solve
the system of equations for the global displacements; and back-substitute dis-
placement values to obtain secondary variables, including strain, stress, and reac-
tion forces at constrained locations (boundary conditions). The reader is advised
to note that we use the term secondary variable only in the mathematical sense;
strain and stress are secondary only in the sense that the values are computed after
the general solution for displacements. The strain and stress values are of primary
importance in design.
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Figure 3.2
(a) A two-element truss with node and element numbers. (b) Global displacement notation.
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Conversion of element equations from element coordinates to global coordi-
nates and assembly of the global equilibrium equations are described first in the
two-dimensional case with reference to Figure 3.2a. The figure depicts a simple
two-dimensional truss composed of two structural members joined by pin con-
nections and subjected to applied external forces. The pin connections are taken
as the nodes of two bar elements as shown; node and element numbers, as well
as the selected global coordinate system are also shown. The corresponding
global displacements are shown in Figure 3.2b. The convention used here for
global displacements is that U2i−1 is displacement in the global X direction of
node i and U2i is displacement of node i in the global Y direction. The convention
is by no means restrictive; the convention is selected such that displacements in
the direction of the global X axis are odd numbered and displacements in the
direction of the global Y axis are even numbered. (In using FEM software, the
reader will find that displacements are denoted in various fashions, UX, UY, UZ,
etc.) Orientation angle � for each element is measured as positive from the global
X axis to the element x axis, as shown. Node numbers are circled while element
numbers are in boxes. Element numbers are superscripted in the notation.

To obtain the equilibrium conditions, free-body diagrams of the three con-
necting nodes and the two elements are drawn in Figure 3.3. Note that the exter-
nal forces are numbered via the same convention as the global displacements.
For node 1, (Figure 3.3a), we have the following equilibrium equations in the
global X and Y directions, respectively:

F1 − f (1)
1 cos �1 = 0 (3.1a)

F2 − f (1)
1 sin �1 = 0 (3.1b)
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Figure 3.3
(a)–(c) Nodal free-body diagrams. (d) and (e) Element free-body diagrams.
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and for node 2,

F3 − f (2)
2 cos �2 = 0 (3.2a)

F4 − f (2)
2 sin �2 = 0 (3.2b)

while for node 3,

F5 − f (1)
3 cos �1 − f (2)

3 cos �2 = 0 (3.3a)

F6 − f (1)
3 sin �1 − f (2)

3 sin �2 = 0 (3.3b)

Equations 3.1–3.3 simply represent the conditions of static equilibrium from a
rigid body mechanics standpoint. Assuming external loads F5 and F6 are known,
these six nodal equilibrium equations formally contain eight unknowns (forces).
Since the example truss is statically determinate, we can invoke the additional
equilibrium conditions applicable to the truss as a whole as well as those for the
individual elements (Figures 3.3d and 3.3e) and eventually solve for all of the
forces. However, a more systematic procedure is obtained if the formulation is
transformed so that the unknowns are nodal displacements. Once the transfor-
mation is accomplished, we find that the number of unknowns is exactly the
same as the number of nodal equilibrium equations. In addition, static indeter-
minacy is automatically accommodated. As the reader may recall from study of
mechanics of materials, the solution of statically indeterminate systems requires
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specification of one or more displacement relations; hence, the displacement for-
mulation of the finite element method includes such situations.

To illustrate the transformation to displacements, Figure 3.4a depicts a bar
element connected at nodes i and j in a general position in a two-dimensional
(2-D) truss structure. As a result of external loading on the truss, we assume that
nodes i and j undergo 2-D displacement, as shown in Figure 3.4b. Since the ele-
ment must remain connected at the structural joints, the connected element nodes
must undergo the same 2-D displacements. This means that the element is sub-
jected not only to axial motion but rotation as well. To account for the rotation,
we added displacements v1 and v2 at element nodes 1 and 2, respectively, in the
direction perpendicular to the element x axis. Owing to the assumption of smooth
pin joint connections, the perpendicular displacements are not associated with
element stiffness; nevertheless, these displacements must exist so that the ele-
ment remains connected to the structural joint so that the element displacements
are compatible with (i.e., the same as) joint displacements. Although the element
undergoes a rotation in general, for computation purposes, orientation angle � is
assumed to be the same as in the undeformed structure. This is a result of the
assumption of small, elastic deformations and is used throughout the text.

To now relate element nodal displacements referred to the element coordi-
nates to element displacements in global coordinates, Figure 3.4c shows element
nodal displacements in the global system using the notation

U (e)
1 = element node 1 displacement in the global X direction

U (e)
2 = element node 1 displacement in the global Y direction

U (e)
3 = element node 2 displacement in the global X direction

U (e)
4 = element node 2 displacement in the global Y direction
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Figure 3.4
(a) Bar element at orientation �. (b) General displacements of a bar element. (c) Bar element
global displacements.
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Again, note the use of capital letters for global quantities and the superscript
notation to refer to an individual element. As the nodal displacements must be
the same in both coordinate systems, we can equate vector components of global
displacements to element system displacements to obtain the relations

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

v(e)
1 = −U (e)

1 sin � + U (e)
2 cos �

(3.4a)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

v(e)
1 = −U (e)

3 sin � + U (e)
4 cos �

(3.4b)

As noted, the v displacement components are not associated with element stiff-
ness, hence not associated with element forces, so we can express the axial de-
formation of the element as

�(e) = u (e)
2 − u (e)

1 = (
U (e)

3 − U (e)
1

)
cos � + (

U (e)
4 − U (e)

2

)
sin � (3.5)

The net axial force acting on the element is then

f (e) = k (e)�(e) = k (e)
{(

U (e)
3 − U (e)

1

)
cos � + (

U (e)
4 − U (e)

2

)
sin �

}
(3.6)

Utilizing Equation 3.6 for element 1 (Figure 3.3d) while noting that the dis-
placements of element 1 are related to the specified global displacements as
U (1)

1 = U1, U (1)
2 = U2, U (1)

3 = U5, U (1)
4 = U6, we have the force in element 1 as

f (1)
3 = − f (1)

1 = k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1] (3.7)

and similarly for element 2 (Figure 3.3e):

f (2)
3 = − f (2)

2 = k (2) [(U5 − U3)cos �2 + (U6 − U4)sin �2] (3.8)

Note that, in writing Equations 3.7 and 3.8, we invoke the condition that the dis-
placements of node 3 (U5 and U6) are the same for each element. To reiterate, this
assumption is actually a requirement, since on a physical basis, the structure
must remain connected at the joints after deformation. Displacement compatibil-
ity at the nodes is a fundamental requirement of the finite element method.

Substituting Equations 3.7 and 3.8 into the nodal equilibrium conditions
(Equations 3.1–3.3) yields

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]cos �1 = F1 (3.9)

−k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F2 (3.10)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]cos �2 = F3 (3.11)

−k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2 = F4 (3.12)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2] cos �2

+ k (1)[(U5 − U3)cos �1 + (U6 − U4)sin �1]cos �1 = F5 (3.13)

k (2)[(U5 − U3)cos �2 + (U6 − U4)sin �2]sin �2

+ k (1)[(U5 − U1)cos �1 + (U6 − U2)sin �1]sin �1 = F6 (3.14)
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Equations 3.9 through 3.14 are equivalent to the matrix form





k(1)c2�1 k(1)s�1c�1 0 0 −k(1)c2�1 −k(1)s�1c�1

k(1)s�1c�1 k(1)s2�1 0 0 −k(1)s�1c�1 −k(1)s2�1

0 0 k(2)c2�2 k(2)s�2c�2 −k(2)c2�2 −k(2)s�2c�2

0 0 k(2)s�2c�2 k(2)s2�2 −k(2)s�2c�2 −k(2)s2�2

−k(1)c2�12 −k1s�1c�1 −k(2)c2�2 −k(2)s�2c�2
k(1)c2�1+

k(2)c2�2

k(1)s�1c�1+
k(2)s�2c�2

−k1s�1c�1 −k(1)s2�1 −k(2)s�2c�2 −k(2)s2�2
k(1)s�1c�1+

k(2)s�2c�2

k(1)s2�1+
k(2)s2�2











U1

U2

U3

U4

U5

U6






=






F1

F2

F3

F4

F5

F6






(3.15)

The six algebraic equations represented by matrix Equation 3.15 express the
complete set of equilibrium conditions for the two-element truss. Equation 3.15
is of the form

[K ]{U } = {F } (3.16)

where [K ] is the global stiffness matrix, {U } is the vector of nodal displace-
ments, and {F } is the vector of applied nodal forces. We observe that the global
stiffness matrix is a 6 × 6 symmetric matrix corresponding to six possible global
displacements. Application of boundary conditions and solution of the equations
are deferred at this time, pending further discussion.

3.3 ELEMENT TRANSFORMATION
Formulation of global finite element equations by direct application of equilib-
rium conditions, as in the previous section, proves to be quite cumbersome ex-
cept for the very simplest of models. By writing the nodal equilibrium equations
in the global coordinate system and introducing the displacement formulation,
the procedure of the previous section implicitly transformed the individual ele-
ment characteristics (the stiffness matrix) to the global system. A direct method
for transforming the stiffness characteristics on an element-by-element basis
is now developed in preparation for use in the direct assembly procedure of the
following section.

Recalling the bar element equations expressed in the element frame as

AE

L

[
1 −1

−1 1

]{
u (e)

1

u (e)
2

}

=
[

ke −ke

−ke ke

]{
u (e)

1

u (e)
2

}

=
{

f (e)
1

f (e)
2

}

(3.17)

the present objective is to transform these equilibrium equations into the global
coordinate system in the form

[
K (e)]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






=






F (e)
1

F (e)
2

F (e)
3

F (e)
4






(3.18)
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In Equation 3.18, [K (e)] represents the element stiffness matrix in the global co-
ordinate system, the vector {F (e)} on the right-hand side contains the element
nodal force components in the global frame, displacements U (e)

1 and U (e)
3 are

parallel to the global X axis, while U (e)
2 and U (e)

4 are parallel to the global Y axis.
The relation between the element axial displacements in the element coordinate
system and the element displacements in global coordinates (Equation 3.4) is

u (e)
1 = U (e)

1 cos � + U (e)
2 sin � (3.19)

u (e)
2 = U (e)

3 cos � + U (e)
4 sin � (3.20)

which can be written in matrix form as

{
u(e)

1

u(e)
2

}

=
[

cos � sin � 0 0
0 0 cos � sin �

]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






= [R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






(3.21)

where

[R] =
[

cos � sin � 0 0
0 0 cos � sin �

]
(3.22)

is the transformation matrix of element axial displacements to global displace-
ments. (Again note that the element nodal displacements in the direction perpen-
dicular to the element axis, v1 and v2, are not considered in the stiffness matrix
development; these displacements come into play in dynamic analyses in
Chapter 10.) Substituting Equation 3.22 into Equation 3.17 yields

[
ke −ke

−ke ke

][
cos � sin � 0 0

0 0 cos � sin �

]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






=
{

f (e)
1

f (e)
2

}

(3.23)

or

[
ke −ke

−ke ke

]
[R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






=
{

f (e)
1

f (e)
2

}

(3.24)

While we have transformed the equilibrium equations from element displace-
ments to global displacements as the unknowns, the equations are still expressed
in the element coordinate system. The first of Equation 3.23 is the equilibrium
condition for element node 1 in the element coordinate system. If we multiply
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this equation by cos �, we obtain the equilibrium equation for the node in the
X direction of the global coordinate system. Similarly, multiplying by sin � , the
Y direction global equilibrium equation is obtained. Exactly the same procedure
with the second equation expresses equilibrium of element node 2 in the global
coordinate system. The same desired operations described are obtained if we
premultiply both sides of Equation 3.24 by [R]T , the transpose of the transfor-
mation matrix; that is,

[R]T

[
ke −ke

−ke ke

]
[R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






=






cos � 0
sin � 0

0 cos �
0 sin �






{
f (e)

1

f (e)
2

}

=






f (e)
1 cos �

f (e)
1 sin �

f (e)
2 cos �

f (e)
2 sin �






(3.25)

Clearly, the right-hand side of Equation 3.25 represents the components of the
element forces in the global coordinate system, so we now have

[R]T

[
ke −ke

−ke ke

]
[R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






=






F (e)
1

F (e)
2

F (e)
3

F (e)
4






(3.26)

Matrix Equation 3.26 represents the equilibrium equations for element nodes 1
and 2, expressed in the global coordinate system. Comparing this result with
Equation 3.18, the element stiffness matrix in the global coordinate frame is seen
to be given by

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.27)

Introducing the notation c = cos � , s = sin � and performing the matrix multi-
plications on the right-hand side of Equation 3.27 results in

[
K (e)] = ke






c2 sc −c2 −sc

sc s2 −sc −s2

−c2 −sc c2 sc

−sc −s2 sc s2






(3.28)

where ke = AE/L is the characteristic axial stiffness of the element. 
Examination of Equation 3.28 shows that the symmetry of the element stiff-

ness matrix is preserved in the transformation to global coordinates. In addition,
although not obvious by inspection, it can be shown that the determinant is zero,
indicating that, after transformation, the stiffness matrix remains singular. This is
to be expected, since as previously discussed, rigid body motion of the element
is possible in the absence of specified constraints.
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3.3.1 Direction Cosines

In practice, a finite element model is constructed by defining nodes at specified
coordinate locations followed by definition of elements by specification of the
nodes connected by each element. For the case at hand, nodes i and j are defined
in global coordinates by (Xi, Yi) and (Xj, Yj). Using the nodal coordinates, element
length is readily computed as

L = [( X j − Xi )
2 + (Yj − Yi )

2]1/2 (3.29)

and the unit vector directed from node i to node j is

� = 1

L
[( X j − Xi )I + (Yj − Yi )J] = cos �X I + cos �Y J (3.30)

where I and J are unit vectors in global coordinate directions X and Y, respec-
tively. Recalling the definition of the scalar product of two vectors and referring
again to Figure 3.4, the trigonometric values required to construct the element
transformation matrix are also readily determined from the nodal coordinates as
the direction cosines in Equation 3.30

cos � = cos �X = � · I = X j − Xi

L
(3.31)

sin � = cos �Y = � · J = Yj − Yi

L
(3.32)

Thus, the element stiffness matrix of a bar element in global coordinates can
be completely determined by specification of the nodal coordinates, the cross-
sectional area of the element, and the modulus of elasticity of the element material.

3.4 DIRECT ASSEMBLY OF GLOBAL
STIFFNESS MATRIX

Having addressed the procedure of transforming the element characteristics of
the one-dimensional bar element into the global coordinate system of a two-
dimensional structure, we now address a method of obtaining the global equilib-
rium equations via an element-by-element assembly procedure. The technique of
directly assembling the global stiffness matrix for a finite element model of a
truss is discussed in terms of the simple two-element system depicted in Fig-
ure 3.2. Assuming the geometry and material properties to be completely speci-
fied, the element stiffness matrix in the global frame can be formulated for each
element using Equation 3.28 to obtain

[
K (1)] =






k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44






(3.33)
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for element 1 and 

[
K (2)] =






k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44






(3.34)

for element 2. The stiffness matrices given by Equations 3.33 and 3.34 contain
32 terms, which together will form the 6 × 6 system matrix containing 36 terms.
To “assemble” the individual element stiffness matrices into the global stiffness
matrix, it is necessary to observe the correspondence of individual element dis-
placements to global displacements and allocate the associated element stiffness
terms to the correct location in the global matrix. For element 1 of Figure 3.2, the
element displacements correspond to global displacements per

{
U (1)} =






U (e)
1

U (e)
2

U (e)
3

U (e)
4






⇒






U1

U2

U5

U6





(3.35)

while for element 2

{
U (2)} =






U (e)
1

U (e)
2

U (e)
3

U (e)
4






⇒






U3

U4

U5

U6





(3.36)

Equations 3.35 and 3.36 are the connectivity relations for the truss and explicitly
indicate how each element is connected in the structure. For example, Equa-
tion 3.35 clearly shows that element 1 is not associated with global displacements
U3 and U4 (therefore, not connected to global node 2) and, hence, contributes no
stiffness terms affecting those displacements. This means that element 1 has no
effect on the third and fourth rows and columns of the global stiffness matrix.
Similarly, element 2 contributes nothing to the first and second rows and columns.

Rather that write individual displacement relations, it is convenient to place
all the element to global displacement data in a single table as shown in Table 3.1.

Table 3.1 Nodal Displacement Correspondence Table

Global Displacement Element 1 Displacement Element 2 Displacement

1 1 0
2 2 0
3 0 1
4 0 2
5 3 3
6 4 4
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The first column contains the entire set of global displacements in numerical
order. Each succeeding column represents an element and contains the number of
the element displacement corresponding to the global displacement in each row.
A zero entry indicates no connection, therefore no stiffness contribution. The
individual terms in the global stiffness matrix are then obtained by allocating the
element stiffness terms per the table as follows:

K11 = k (1)
11 + 0

K12 = k (1)
12 + 0

K13 = 0 + 0

K14 = 0 + 0

K15 = k (1)
13 + 0

K16 = k (1)
14 + 0

K22 = k (1)
22 + 0

K23 = 0 + 0

K24 = 0 + 0

K25 = k (1)
23 + 0

K26 = k (1)
24 + 0

K33 = 0 + k (2)
11

K34 = 0 + k (2)
12

K35 = 0 + k (2)
13

K36 = 0 + k (2)
14

K44 = 0 + k (2)
22

K45 = 0 + k (2)
23

K46 = 0 + k (2)
24

K55 = k (1)
33 + k (2)

33

K56 = k (1)
34 + k (2)

34

K66 = k (1)
44 + k (2)

44

where the known symmetry of the stiffness matrix has been implicitly used to
avoid repetition. It is readily shown that the resulting global stiffness matrix is
identical in every respect to that obtained in Section 3.2 via the equilibrium
equations. This is the direct stiffness method; the global stiffness matrix is
“assembled” by direct addition of the individual element stiffness terms per the
nodal displacement correspondence table that defines element connectivity.
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For the truss shown in Figure 3.2, �1 = �/4, �2 = 0, and the element properties are such
that k1 = A1 E1/L 1 , k2 = A2 E2/L 2 . Transform the element stiffness matrix of each ele-
ment into the global reference frame and assemble the global stiffness matrix.

■ Solution
For element 1, cos �1 = sin �1 =

√
2/2 and c2�1 = s2�1 = c�1s�1 = 1

2
, so substitution

into Equation 3.33 gives

[
K (1)

] = k1

2






1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1






For element 2, cos �2 = 1, sin �2 = 0 which gives the transformed stiffness matrix as

[
K (2)

] = k2






1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0






Assembling the global stiffness matrix directly using Equations 3.35 and 3.36 gives

K11 = k1/2

K12 = k1/2

K13 = 0

K14 = 0

K15 = −k1/2

K16 = −k1/2

K22 = k1/2

K23 = 0

K24 = 0

K25 = −k1/2

K26 = −k1/2

K33 = k2

K34 = 0

K35 = −k2

K36 = 0

K44 = 0

K45 = 0

K46 = 0

EXAMPLE 3.1
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K55 = k1/2 + k2

K56 = k1/2

K66 = k1/2

The complete global stiffness matrix is then

[K ] =






k1/2 k1/2 0 0 −k1/2 −k1/2

k1/2 k1/2 0 0 −k1/2 −k1/2

0 0 k2 0 −k2 0

0 0 0 0 0 0

−k1/2 −k1/2 −k2 0 k1/2 + k2 k1/2

−k1/2 −k1/2 0 0 k1/2 k1/2






The previously described embodiment of the direct stiffness method is
straightforward but cumbersome and inefficient in practice. The main problem
inherent to the method lies in the fact that each term of the global stiffness ma-
trix is computed sequentially and accomplishment of this sequential construction
requires that each element be considered at each step. A technique that is much
more efficient and well-suited to digital computer operations is now described. In
the second method, the element stiffness matrix for each element is considered in
sequence, and the element stiffness terms added to the global stiffness matrix per
the nodal connectivity table. Thus, all terms of an individual element stiffness
matrix are added to the global matrix, after which that element need not be con-
sidered further. To illustrate, we rewrite Equations 3.33 and 3.34 as

1 2 5 6

[
K (1)] =






k(1)
11 k(1)

12 k(1)
13 k(1)

14

k(1)
21 k(1)

22 k(1)
23 k(1)

24

k(1)
31 k(1)

32 k(1)
33 k(1)

34

k(1)
41 k(1)

42 k(1)
43 k(1)

44






1

2

5

6

(3.37)

3 4 5 6

[
K (2)] =






k(2)
11 k(2)

12 k(2)
13 k(2)

14

k(2)
21 k(2)

22 k(2)
23 k(2)

24

k(2)
31 k(2)

32 k(2)
33 k(2)

34

k(2)
41 k(2)

42 k(2)
43 k(2)

44






3

4

5

6

(3.38)

In this depiction of the stiffness matrices for the two individual elements, the
numbers to the right of each row and above each column indicate the global
displacement associated with the corresponding row and column of the element
stiffness matrix. Thus, we combine the nodal displacement correspondence table
with the individual element stiffness matrices. For the element matrices, each
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individual component is now labeled as associated with a specific row-column
position of the global stiffness matrix and can be added directly to that location.
For example, Equation 3.38 shows that the k (2)

24 component of element 2 is to be
added to global stiffness component K46 (and via symmetry K64). Thus, we can
take each element in turn and add the individual components of the element stiff-
ness matrix to the proper locations in the global stiffness matrix.

The form of Equations 3.37 and 3.38 is convenient for illustrative purposes
only. For actual computations, inclusion of the global displacement numbers
within the element stiffness matrix is unwieldy. A streamlined technique suitable
for computer application is described next. For a 2-D truss modeled by spar
elements, the following conventions are adopted:

1. The global nodes at which each element is connected are denoted by i and j.
2. The origin of the element coordinate system is located at node i and the

element x axis has a positive sense in the direction from node i to node j.
3. The global displacements at element nodes are U2i−1, U2i, U2j−1, and U2j

as noted in Section 3.2.

Using these conventions, all the information required to define element con-
nectivity and assemble the global stiffness matrix is embodied in an element-
node connectivity table, which lists element numbers in sequence and shows the
global node numbers i and j to which each element is connected. For the two-
element truss of Figure 3.2, the required data are as shown in Table 3.2.

Using the nodal data of Table 3.2, we define, for each element, a 1 × 4 ele-
ment displacement location vector as

[
L (e)

] = [2i − 1 2i 2 j − 1 2 j ] (3.39)

where each value is the global displacement number corresponding to element
stiffness matrix rows and columns 1, 2, 3, 4 respectively. For the truss of Fig-
ure 3.2, the element displacement location vectors are 

[
L (1)

] = [1 2 5 6] (3.40)
[
L (2)

] = [3 4 5 6] (3.41)

Before proceeding, let us note the quantity of information that can be
obtained from simple-looking Table 3.2. With the geometry of the structure
defined, the (X, Y) global coordinates of each node are specified. Using these
data, the length of each element and the direction cosines of element orientation

Table 3.2 Element-Node Connectivity Table
for Figure 3.2

Node

Element i j

1 1 3
2 2 3
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are computed via Equations 3.29 and 3.30, respectively. Specification of the
cross-sectional area A and modulus of elasticity E of each element allows com-
putation of the element stiffness matrix in the global frame using Equation 3.28.
Finally, the element stiffness matrix terms are added to the global stiffness matrix
using the element displacement location vector.

In the context of the current example, the reader is to imagine a 6 × 6 array
of mailboxes representing the global stiffness matrix, each of which is originally
empty (i.e., the stiffness coefficient is zero). We then consider the stiffness ma-
trix of an individual element in the (2-D) global reference frame. Per the location
vector (addresses) for the element, the individual values of the element stiffness
matrix are placed in the appropriate mailbox. In this fashion, each element is
processed in sequence and its stiffness characteristics added to the global matrix.
After all elements are processed, the array of mailboxes contains the global stiff-
ness matrix.

3.5 BOUNDARY CONDITIONS,
CONSTRAINT FORCES

Having obtained the global stiffness matrix via either the equilibrium equations
or direct assembly, the system displacement equations for the example truss of
Figure 3.2 are of the form

[K ]






U1

U2

U3

U4

U5

U6






=






F1

F2

F3

F4

F5

F6






(3.42)

As noted, the global stiffness matrix is a singular matrix; therefore, a unique so-
lution to Equation 3.42 cannot be obtained directly. However, in developing
these equations, we have not yet taken into account the constraints imposed on
system displacements by the support conditions that must exist to preclude rigid
body motion. In this example, we observe the displacement boundary conditions

U1 = U2 = U3 = U4 = 0 (3.43)

leaving only U5 and U6 to be determined. Substituting the boundary condition
values and expanding Equation 3.42 we have, formally,

K15U5 + K16U6 = F1

K25U5 + K26U6 = F2

K35U5 + K36U6 = F3

K45U5 + K46U6 = F4

K55U5 + K56U6 = F5

K56U5 + K66U6 = F6

(3.44)
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as the reduced system equations (this is the partitioned set of matrix equations,
written explicitly for the active displacements). In this example, F1, F2, F3, and
F4 are the components of the reaction forces at constrained nodes 1 and 2, while
F5 and F6 are global components of applied external force at node 3. Given the
external force components, the last two of Equations 3.44 can be explicitly solved
for displacements U5 and U6. The values obtained for these two displacements
are then substituted into the constraint equations (the first four of Equations 3.44)
and the reaction force components computed.

A more general approach to application of boundary conditions and compu-
tation of reactions is as follows. Letting the subscript c denote constrained
displacements and subscript a denote unconstrained (active) displacements, the
system equations can be partitioned (Appendix A) to obtain

[
Kcc Kca

Kac Kaa

]{
Uc

Ua

}
=

{
Fc

Fa

}
(3.45)

where the values of the constrained displacements Uc are known (but not neces-
sarily zero), as are the applied external forces Fa. Thus, the unknown, active
displacements are obtained via the lower partition as

[Kac]{Uc} + [Kaa]{Ua} = {Fa} (3.46a)

{Ua} = [Kaa]−1({Fa} − [Kac]{Uc}) (3.46b)

where we have assumed that the specified displacements {Uc} are not necessar-
ily zero, although that is usually the case in a truss structure. (Again, note that, for
numerical efficiency, methods other than matrix inversion are applied to obtain
the solutions formally represented by Equations 3.46.) Given the displacement
solution of Equations 3.46, the reactions are obtained using the upper partition of
matrix Equation 3.45 as

{Fc} = [Kcc]{Uc} + [Kca]{Ua} (3.47)

where [Kca] = [Kac]T by the symmetry property of the stiffness matrix.

3.6 ELEMENT STRAIN AND STRESS
The final computational step in finite element analysis of a truss structure is to
utilize the global displacements obtained in the solution step to determine the
strain and stress in each element of the truss. For an element connecting nodes i
and j, the element nodal displacements in the element coordinate system are
given by Equations 3.19 and 3.20 as

u (e)
1 = U (e)

1 cos � + U (e)
2 sin �

u (e)
2 = U (e)

3 cos � + U (e)
4 sin �

(3.48)
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and the element axial strain (utilizing Equation 2.29 and the discretization and
interpolation functions of Equation 2.25) is then

ε(e) = du (e)(x )

dx
= d(e)

dx
[N1(x ) N2(x )]

{
u (e)

1

u (e)
2

}

=
[ −1

L (e)

1

L (e)

] {
u (e)

1

u (e)
2

}

= u (e)
2 − u (e)

1

L (e)
(3.49)

where L (e) is element length. The element axial stress is then obtained via appli-
cation of Hooke’s law as

� (e) = Eε(e) (3.50)

Note, however, that the global solution does not give the element axial displace-
ment directly. Rather, the element displacements are obtained from the global
displacements via Equations 3.48. Recalling Equations 3.21 and 3.22, the ele-
ment strain in terms of global system displacements is

ε(e) = du(e)(x)

dx
= d

dx
[N1(x) N2(x)][R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






(3.51)

where [R] is the element transformation matrix defined by Equation 3.22. The
element stresses for the bar element in terms of global displacements are those
given by

�(e) = Eε(e) = E
du(e)(x)

dx
= E

d(e)

dx
[N1(x) N2(x)][R]






U (e)
1

U (e)
2

U (e)
3

U (e)
4






(3.52)

As the bar element is formulated here, a positive axial stress value indicates that
the element is in tension and a negative value indicates compression per the usual
convention. Note that the stress calculation indicated in Equation 3.52 must be
performed on an element-by-element basis. If desired, the element forces can be
obtained via Equation 3.23.

The two-element truss in Figure 3.5 is subjected to external loading as shown. Using the
same node and element numbering as in Figure 3.2, determine the displacement com-
ponents of node 3, the reaction force components at nodes 1 and 2, and the element
displacements, stresses, and forces. The elements have modulus of elasticity E1 = E2 =
10 × 106 lb/in.2 and cross-sectional areas A1 = A2 = 1.5 in.2.

EXAMPLE 3.2
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2

1

2

1

3

(0, 40)

(0, 0)

(40, 40)

500 lb

300 lb

Figure 3.5 Two-element truss with
external loading.

■ Solution
The nodal coordinates are such that �1 = �/4 and �2 = 0 and the element lengths are
L 1 = √

402 + 402 ≈ 56.57 in., L2 = 40 in. The characteristic element stiffnesses are then

k1 = A1 E1

L 1
= 1.5(10)(106)

56.57
= 2.65(105) lb/in.

k2 = A2 E2

L 2
= 1.5(10)(106)

40
= 3.75(105) lb/in.

As the element orientation angles and numbering scheme are the same as in Example 3.1,
we use the result of that example to write the global stiffness matrix as

[K ] =






1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325






105 lb/in.

Incorporating the displacement constraints U1 = U2 = U3 = U4 = 0 , the global equilib-
rium equations are

105






1.325 1.325 0 0 −1.325 −1.325
1.325 1.325 0 0 −1.325 −1.325

0 0 3.75 0 −3.75 0
0 0 0 0 0 0

−1.325 −1.325 −3.75 0 5.075 1.325
−1.325 −1.325 0 0 1.325 1.325




��������������������

�
�
�
�
�
�
�






0
0
0
0

U5

U6





�

=






F1

F2

F3

F4

500
300





��
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and the dashed lines indicate the partitioning technique of Equation 3.45. Hence, the
active displacements are governed by

105

[
5.075 1.325
1.325 1.325

]{
U5

U6

}
=

{
500
300

}

Simultaneous solution gives the displacements as

U5 = 5.333 × 10−4 in. and U6 = 1.731 × 10−3 in.

As all the constrained displacement values are zero, the reaction forces are obtained via
Equation 3.47 as






F1

F2

F3

F4





= {Fc} = [Kca ]{Ua } = 105






−1.325 −1.325
−1.325 −1.325
−3.75 0

0 0






{
0.5333
1.731

}
10−3 =






−300
−300
−200

0





lb

and we note that the net force on the structure is zero, as required for equilibrium. A check
of moments about any of the three nodes also shows that moment equilibrium is satisfied.

For element 1, the element displacements in the element coordinate system are

{
u(1)

1

u(1)
2

}

= [
R(1)

]






U1

U2

U5

U6





=

√
2

2

[
1 1 0 0
0 0 1 1

]





0
0

0.5333
1.731





10−3 =

{
0

1.6

}
10−3 in.

Element stress is computed using Equation 3.52:

�(1) = E1

[
− 1

L1

1

L1

][
R(1)]






U1

U2

U5

U6






Using the element displacements just computed, we have

� (1) = 10(106)

[
− 1

56.57

1

56.57

]{
0

1.6

}
10−3 ≈ 283 lb/in. 2

and the positive results indicate tensile stress.
The element nodal forces via Equation 3.23 are

{
f (1)

1

f (1)
2

}

=
[

k1 −k1

−k1 k1

]{
u (1)

1

u (1)
2

}

= 2.65(105)

[
1 −1

−1 1

]{
0

1.6

}
10−3

=
{ −424

424

}
lb

and the algebraic signs of the element nodal forces also indicate tension.
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For element 2, the same procedure in sequence gives

{
u(2)

1

u(2)
2

}

= [
R(2)

]






U1

U2

U5

U6





=

[
1 0 0 0
0 0 1 0

]





0
0

0.5333
1.731





10−3 =

{
0

0.5333

}
10−4 in.

�(2) = 10(106)

[
− 1

40

1

40

]{
0

0.5333

}
10−3 ≈ 133 lb/in.2

{
f (2)

1

f (2)
2

}

=
[

k2 −k2

−k2 k2

]{
u(2)

1

u(2)
2

}

= 3.75(105)

[
1 −1

−1 1

]{
0

0.5333

}
10−3 =

{−200
200

}
lb

also indicating tension.
The finite method is intended to be a general purpose procedure for analyzing prob-

lems for which the general solution is not known; however, it is informative in the exam-
ples of this chapter (since the bar element poses an exact formulation) to check the
solutions in terms of axial stress computed simply as F/A for an axially loaded member.
The reader is encouraged to compute the axial stress by the simple stress formula for each
example to verify that the solutions via the stiffness-based finite element method are
correct.

3.7 COMPREHENSIVE EXAMPLE
As a comprehensive example of two-dimensional truss analysis, the structure de-
picted in Figure 3.6a is analyzed to obtain displacements, reaction forces, strains,
and stresses. While we do not include all computational details, the example
illustrates the required steps, in sequence, for a finite element analysis.

(a)

6000 lb

40 in. 40 in.

40 in.

4000 lb

2000 lb

2000 lb

Figure 3.6
(a) For each element, A = 1.5 in.2, E = 10 × 106 psi. (b) Node, element, and global displacement notation.

(b)

U7

642

73

51

U6

U8

4

Y

2

U4

U3

U12

U11

U10

U9 X

8

6

53 U51

U2

U1
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Step 1. Specify the global coordinate system, assign node numbers, and
define element connectivity, as shown in Figure 3.6b.

Step 2. Compute individual element stiffness values:

k (1) = k (3) = k (4) = k (5) = k (7) = k (8) = 1.5(107)

40
= 3.75(105) lb/in.

k (2) = k (6) = 1.5(107)

40
√

2
= 2.65(105) lb/in.

Step 3. Transform element stiffness matrices into the global coordinate
system. Utilizing Equation 3.28 with

�1 = �3 = �5 = �7 = 0 �4 = �8 = �/2 �2 = �/4 �6 = 3�/4

we obtain

[
K (1)] = [

K (3)] = [
K (5)] = [

K (7)] = 3.75(105)






1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0






[
K (4)] = [

K (8)] = 3.75(105)






0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1






[
K (2)] = 2.65(105)

2






1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1






[
K (6)] = 2.65(105)

2






1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1






Step 4a. Construct the element-to-global displacement correspondence table.
With reference to Figure 3.6c, the connectivity and displacement
relations are shown in Table 3.3.

Step 4b. Alternatively and more efficiently, form the element-node
connectivity table (Table 3.4), and the corresponding element global
displacement location vector for each element is

L (1) = [1 2 5 6]

L (2) = [1 2 7 8]

L (3) = [3 4 7 8]

L (4) = [5 6 7 8]
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Table 3.3 Connectivity and Displacement Relations

Global Elem. 1 Elem. 2 Elem. 3 Elem. 4 Elem. 5 Elem. 6 Elem. 7 Elem. 8

1 1 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 2 0 0 0 0 0
5 3 0 0 1 1 0 0 0
6 4 0 0 2 2 0 0 0
7 0 3 3 3 0 3 1 0
8 0 4 4 4 0 4 2 0
9 0 0 0 0 3 1 0 1

10 0 0 0 0 4 2 0 2
11 0 0 0 0 0 0 3 3
12 0 0 0 0 0 0 4 4

Table 3.4 Element-Node Connectivity

Node

Element i j

1 1 3
2 1 4
3 2 4
4 3 4
5 3 5
6 5 4
7 4 6
8 5 6

L (5) = [5 6 9 10]

L (6) = [9 10 7 8]

L (7) = [7 8 11 12]

L (8) = [9 10 11 12]

Step 5. Assemble the global stiffness matrix per either Step 4a or 4b. The
resulting components of the global stiffness matrix are 

K11 = k (1)
11 + k (2)

11 = (3.75 + 2.65/2)105

K12 = k (1)
12 + k (2)

12 = (0 + 2.65/2)105

K13 = K14 = 0

K15 = k (1)
13 = −3.75(105)

K16 = k (1)
14 = 0

K17 = k (2)
13 = −(2.65/2)105
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K18 = k (2)
14 = −(2.65/2)105

K19 = K1,10 = K1,11 = K1,12 = 0

K22 = k (1)
22 + k (2)

22 = 0 + (2.65/2)105

K23 = K24 = 0

K25 = k (1)
23 = 0

K26 = k (1)
24 = 0

K27 = k (2)
23 = −(2.65/2)105

K28 = k (2)
24 = −(2.65/2)105

K29 = K2,10 = K2,11 = K2,12 = 0

K33 = k (3)
11 = 3.75(105)

K34 = k (3)
12 = 0

K35 = K36 = 0

K37 = k (3)
13 = −3.75(105)

K38 = k (3)
14 = 0

K39 = K3,10 = K3,11 = K3,12 = 0

K44 = k (3)
22 = 0

K45 = K46 = 0

K47 = k (3)
23 = 0

K48 = k (3)
24 = 0

K49 = K4,10 = K4,11 = K4,12 = 0

K55 = k (1)
33 + k (4)

11 + k (5)
11 = (3.75 + 0 + 3.75)105

K56 = k (1)
34 + k (4)

12 + k (5)
12 = 0 + 0 + 0 = 0

K57 = k (4)
13 = 0

K58 = k (4)
14 = 0

K59 = k (5)
13 = −3.75(105)

K5,10 = k (5)
14 = 0

K5,11 = K5,12 = 0

K66 = k (2)
44 + k (4)

22 + k (5)
22 = (0 + 3.75 + 0)105

K67 = k (4)
23 = 0

K68 = k (4)
24 = −3.75(10)5
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K69 = k (5)
23 = 0

K6,10 = k (5)
24 = 0

K6,11 = K6,12 = 0

K77 = k (2)
33 + k (3)

33 + k (4)
33 + k (6)

33 + k (7)
11

= (2.65/2 + 3.75 + 0 + 2.65/2 + 3.75)105

K78 = k (2)
34 + k (3)

34 + k (4)
34 + k (6)

34 + k (7)
12

= (2.65/2 + 0 + 0 − 2.65/2 + 0)105 = 0

K79 = k (6)
13 = −(2.65/2)105

K7,10 = k (6)
23 = (2.65/2)105

K7,11 = k (7)
13 = −3.75(105)

K7,12 = k (7)
14 = 0

K88 = k (2)
44 + k (3)

44 + k (4)
44 + k (6)

44 + k (7)
22

= (2.65/2 + 0 + 3.75 + 2.65/2 + 0)105

K89 = k (6)
14 = (2.65/2)105

K8,10 = k (6)
24 = −(2.65/2)105

K8,11 = k (7)
23 = 0

K8,12 = k (7)
24 = 0

K99 = k (5)
33 + k (6)

11 + k (8)
11 = (3.75 + 2.65/2 + 0)105

K9,10 = k (5)
34 + k (6)

12 + k (8)
12 = (0 − 2.65/2 + 0)105

K9,11 = k (8)
13 = 0

K9,12 = k (8)
14 = 0

K10,10 = k (5)
44 + k (6)

22 + k (8)
22 = (0 + 2.65/2 + 3.75)105

K10,11 = k (8)
23 = 0

K10,12 = k (8)
24 = −3.75(105)

K11,11 = k (7)
33 + k (8)

33 = (3.75 + 0)105

K11,12 = k (7)
34 + k (8)

34 = 0 + 0

K12,12 = k (7)
44 + k (8)

44 = (0 + 3.75)105

Step 6. Apply the constraints as dictated by the boundary conditions. In this
example, nodes 1 and 2 are fixed so the displacement constraints are

U1 = U2 = U3 = U4 = 0
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Therefore, the first four equations in the 12 × 12 matrix system

[K ] {U } = {F }
are constraint equations and can be removed from consideration since
the applied displacements are all zero (if not zero, the constraints are
considered as in Equation 3.46, in which case the nonzero constraints
impose additional forces on the unconstrained displacements). The
constraint forces cannot be obtained until the unconstrained
displacements are computed. So, we effectively strike out the
first four rows and columns of the global equations to obtain 

[Kaa]






U5

U6

U7

U8

U9

U10

U11

U12






=






0
−2000

0
0

2000
0

4000
6000






as the system of equations governing the “active” displacements.
Step 7. Solve the equations corresponding to the unconstrained

displacements. For the current example, the equations are solved
using a spreadsheet program, inverting the (relatively small) global
stiffness matrix to obtain






U5

U6

U7

U8

U9

U10

U11

U12






=






0.02133
0.04085

−0.01600
0.04619
0.04267
0.15014

−0.00533
0.16614






in.

Step 8. Back-substitute the displacement data into the constraint equations
to compute reaction forces. Utilizing Equation 3.37, with {Uc} = {0},
we use the four equations previously ignored to compute the force
components at nodes 1 and 2. The constraint equations are of the form

Ki5U5 + Ki6U6 + · · · + Ki,12U12 = Fi i = 1, 4

and, on substitution of the computed displacements, yield





F1

F2

F3

F4





=






−12,000
−4,000
6,000

0





lb
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The reader is urged to utilize these reaction force components and
check the equilibrium conditions of the structure.

Step 9. Compute strain and stress in each element. The major computational
task completed in Step 7 provides the displacement components of
each node in the global coordinate system. With this information and
the known constrained displacements, the displacements of each
element in its element coordinate system can be obtained; hence, the
strain and stress in each element can be computed.

For element 2, for example, we have

u (2)
1 = U1 cos �2 + U2 sin �2 = 0

u (2)
2 = U7 cos �2 + U8 sin �2 = (−0.01600 + 0.04618)

√
2/2

= 0.02134

The axial strain in element 2 is then

ε(2) = u (2)
2 − u (2)

1

L (2)
= 0.02133

40
√

2
= 3.771(10−4)

and corresponding axial stress is

� (2) = Eε(2) = 3771 psi

The results for element 2 are presented as an example only. In finite
element software, the results for each element are available and
can be examined as desired by the user of the software
(postprocessing).

Results for each of the eight elements are shown in Table 3.5; and
per the usual sign convention, positive values indicate tensile stress
while negative values correspond to compressive stress. In obtaining
the computed results for this example, we used a spreadsheet program
to invert the stiffness matrix, MATLAB to solve via matrix inversion,
and a popular finite element software package. The solutions resulting
from each procedure are identical.

Table 3.5 Results for the Eight Elements

Element Strain Stress, psi

1 5.33(10−4) 5333
2 3.77(10−4) 3771
3 −4.0(10−4) −4000
4 1.33(10−4) 1333
5 5.33(10−4) 5333
6 −5.67(10−4) −5657
7 2.67(10−4) 2667
8 4.00(10−4) 4000
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3.8 THREE-DIMENSIONAL TRUSSES
Three-dimensional (3-D) trusses can also be modeled using the bar element,
provided the connections between elements are such that only axial load is trans-
mitted. Strictly, this requires that all connections be ball-and-socket joints. Even
when the connection restriction is not precisely satisfied, analysis of a 3-D truss
using bar elements is often of value in obtaining preliminary estimates of mem-
ber stresses, which in context of design, is valuable in determining required
structural properties. Referring to Figure 3.7 which depicts a one-dimensional
bar element connected to nodes i and j in a 3-D global reference frame, the unit
vector along the element axis (i.e., the element reference frame) expressed in the
global system is

�(e) = 1

L
[( X j − Xi )I + (Yj − Yi )J + ( Z j − Zi )K] (3.53)

or

�(e) = cos �x I + cos �yJ + cos �zK (3.54)

Thus, the element displacements are expressed in components in the 3-D global
system as

u (e)
1 = U (e)

1 cos �x + U (e)
2 cos �y + U (e)

3 cos �z (3.55)

u (e)
2 = U (e)

4 cos �x + U (e)
5 cos �y + U (e)

6 cos �z (3.56)

Here, we use the notation that element displacements 1 and 4 are in the global X
direction, displacements 2 and 5 are in the global Y direction, and element
displacements 3 and 6 are in the global Z direction.

U3j�1

U3i�1

Y

X

Z

�(e)

U3j�2

U3i�2

U3j

U3i

j

i

�Y

�X

�Z

Figure 3.7 Bar element in a 3-D global coordinate
system.
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Analogous to Equation 3.21, Equations 3.55 and 3.56 can be expressed as

{
u(e)

1

u(e)
2

}

=
[

cos �x cos �y cos �z 0 0 0
0 0 0 cos �x cos �y cos �z

]






U (e)
1

U (e)
2

U (e)
3

U (e)
4

U (e)
5

U (e)
6






= [R]
{
U (e)} (3.57)

where [R] is the transformation matrix mapping the one-dimensional element
displacements into a three-dimensional global coordinate system. Following the
identical procedure used for the 2-D case in Section 3.3, the element stiffness
matrix in the element coordinate system is transformed into the 3-D global co-
ordinates via

[
K (e)

] = [R]T

[
ke −ke

−ke ke

]
[R] (3.58)

Substituting for the transformation matrix [R] and performing the multiplication
results in

[
K (e)] = ke






c2
x cx cy cx cz −c2

x −cx cy −cx cz

cx cy c2
y cycz −cx cx −c2

y −cycz

cx cz cycz c2
z −cx cz −cycz −c2

z

−c2
x −cx cx −cx cz c2

x cx cy cx cz

−cx cy −c2
y −cycz cx cy c2

y cycz

−cx cz −cycz −c2
z cx cz cycz c2

z






(3.59)

as the 3-D global stiffness matrix for the one-dimensional bar element where 

cx = cos �x

cy = cos �y

cz = cos �z

(3.60)

Assembly of the global stiffness matrix (hence, the equilibrium equations),
is identical to the procedure discussed for the two-dimensional case with the ob-
vious exception that three displacements are to be accounted for at each node.

The three-member truss shown in Figure 3.8a is connected by ball-and-socket joints and
fixed at nodes 1, 2, and 3. A 5000-lb force is applied at node 4 in the negative Y direction,
as shown. Each of the three members is identical and exhibits a characteristic axial stiff-
ness of 3(105) lb/in. Compute the displacement components of node 4 using a finite
element model with bar elements.

EXAMPLE 3.3
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■ Solution
First, note that the 3-D truss with four nodes has 12 possible displacements. However,
since nodes 1–3 are fixed, nine of the possible displacements are known to be zero. There-
fore, we need assemble only a portion of the system stiffness matrix to solve for the three
unknown displacements. Utilizing the numbering scheme shown in Figure 3.8b and the
element-to-global displacement correspondence table (Table 3.6), we need consider only
the equations




K10,10 K10,11 K10,12

K11,10 K11,11 K11,12

K12,10 K12,11 K12,12










U10

U11

U12





=






0
−5000

0






Prior to assembling the terms required in the system stiffness matrix, the individual
element stiffness matrices must be transformed to the global coordinates as follows.

Element 1

�(1) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − 30)K] = 0.8I − 0.6K

Hence, cx = 0.8, cy = 0, cz = −0.6, and Equation 3.59 gives

[
K (1)

] = 3(105)






0.64 0 −0.48 −0.64 0 0.48
0 0 0 0 0 0

−0.48 0 0.36 0.48 0 −0.36
−0.64 0 0.48 0.64 0 −0.48

0 0 0 0 0 0
0.48 −0 −0.36 −0.48 0 0.36






lb/ln.

(a)

(0, 0, �30)

(40, 0, 0)

Y

XZ

(0, 0, 30)

5000 lb
(0, �30, 0)

2

3

1

4

Figure 3.8
(a) A three-element, 3-D truss. (b) Numbering scheme.

2

3

1 4

U5

U4
U6

U11

U10
U12

U8

U7
U9

U2

U1
U3

1

2

3

(b)
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Element 2

�(2) = 1

50
[(40 − 0)I + (0 − 0)J + (0 − (−30))K] = 0.8I + 0.6K

[
K (2)

] = 3(105)






0.64 0 0.48 −0.64 0 −0.48
0 0 0 0 0 0

0.48 0 0.36 −0.48 0 −0.36
−0.64 0 −0.48 0.64 0 0.48

0 0 0 0 0 0
−0.48 0 −0.36 0.48 0 0.36






lb/in.

Element 3

�(3) = 1

50
[(40 − 0)I + (0 − (−30))J + (0 − 0)K] = 0.8I + 0.6J

[
K (3)

] = 3(105)






0.64 0.48 0 −0.64 −0.48 0
0.48 0.36 0 −0.48 −0.36 0

0 0 0 0 0 0
−0.64 −0.48 0 0.64 0.48 0
−0.48 −0.36 0 0.48 0.36 0

0 0 0 0 0 0






lb/in.

Referring to the last three rows of the displacement correspondence table, the required
terms of the global stiffness matrix are assembled as follows:

K10,10 = k(1)
44 + k(2)

44 + k(3)
44 = 3(105)(0.64 + 0.64 + 0.64) = 5.76(105) lb/in.

K10,11 = K11,10 = k(1)
45 + k(2)

45 + k(3)
45 = 3(105)(0 + 0 + 0.48) = 1.44(105) lb/in.

K10,12 = K12,10 = k(1)
46 + k(2)

46 + k(3)
46 = 3(105)(−0.48 + 0.48 + 0) = 0 lb/in.

K11,11 = k(1)
55 + k(2)

55 + k(3)
55 = 3(105)(0 + 0 + 0.36) = 1.08(105) lb/in.

K11,12 = K12,11 = k(1)
56 + k(2)

56 + k(3)
56 = 3(105)(0 + 0 + 0) = 0 lb/in.

K12,12 = k(1)
66 + k(2)

66 + k(3)
66 = 3(105)(0.36 + 0.36 + 0) = 2.16(105) lb/in.

Table 3.6 Element-to-Global Displacement Correspondence

Global Displacement Element 1 Element 2 Element 3

1 1 0 0
2 2 0 0
3 3 0 0
4 0 1 0
5 0 2 0
6 0 3 0
7 0 0 1
8 0 0 2
9 0 0 3

10 4 4 4
11 5 5 5
12 6 6 6
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The system of equations to be solved for the displacements of node 4 are

105




5.76 1.44 0
1.44 1.08 0

0 0 2.16










U10

U11

U12





=






0
−5000

0






and simultaneous solution yields

U10 � 0.01736 in.

U11 � �0.06944 in.

U12 � 0

While the complete analysis is not conducted in the context of this example, the re-
action forces, element strains, and element stresses would be determined by the same pro-
cedures followed in Section 3.7 for the two-dimensional case. It must be pointed out that
the procedures required to obtain the individual element resultants are quite readily
obtained by the matrix operations described here. Once the displacements have been cal-
culated, the remaining (so-called) secondary variables (strain, stress, axial force) are
readily computed using the matrices and displacement interpolation functions developed
in the formulation of the original displacement problem.

3.9 SUMMARY
This chapter develops the complete procedure for performing a finite element analysis of
a structure and illustrates it by several examples. Although only the simple axial element
has been used, the procedure described is common to the finite element method for all
element and analysis types, as will become clear in subsequent chapters. The direct stiff-
ness method is by far the most straightforward technique for assembling the system
matrices required for finite element analysis and is also very amenable to digital computer
programming techniques.
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PROBLEMS
3.1 In the two-member truss shown in Figure 3.2, let �1 = 45◦ , �2 = 15◦ , and

F5 = 5000 lb, F6 = 3000 lb.
a. Using only static force equilibrium equations, solve for the force in each

member as well as the reaction force components. 
b. Assuming each member has axial stiffness k = 52000 lb/in., compute the

axial deflection of each member. 
c. Using the results of part b, calculate the X and Y displacements of node 3.
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3.2 Calculate the X and Y displacements of node 3 using the finite element approach
and the data given in Problem 3.1. Also calculate the force in each element. How
do your solutions compare to the results of Problem 3.1?

3.3 Verify Equation 3.28 by direct multiplication of the matrices.
3.4 Show that the transformed stiffness matrix for the bar element as given by

Equation 3.28 is singular.
3.5 Each of the bar elements depicted in Figure P3.5 has a solid circular cross-

section with diameter d = 1.5 in. The material is a low-carbon steel having
modulus of elasticity E = 30 × 106 psi. The nodal coordinates are given
in a global (X, Y ) coordinate system (in inches). Determine the element stiffness
matrix of each element in the global system.

Figure P3.5

3.6 Repeat Problem 3.5 for the bar elements in Figure P3.6. For these elements,
d = 40 mm, E = 69 GPa, and the nodal coordinates are in meters.

Figure P3.6

(b)

2

(0, 0)

(0.2, �0.2)

1

(a)

2

(0.1, 0.1)

(0.4, 0.2)
1

(e)

(0, 0)

2
(40, �10)

1

(d)

2
(�20, 30)

(10, 10)
1

(c)

2

(0, 0)

(5, 30)

1

(b)

2

(20, 10)

(30, 15)

1

(a)

1

(0, 0)

2 (30, 30)

Y

X
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Figure P3.6 (Continued )

3.7 For each of the truss structures shown in Figure P3.7, construct an element-
to-global displacement correspondence table in the form of Table 3.1.

Figure P3.7

(b)

10

1

2

3 5
7

64

2

3

4

8

95

6

7

1

(a)

6

2 53 97 211917151311

10 14 183

1

5 7 9 11

4 81 12 16 202 4 6 8 10

12

(e)

2
(3, 4)

(0, 0)

1

(d)

2

(0, 1.2)

(�0.5, 0)

1

(c)

2

(1, 2)

(�0.3, 3)

1
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Figure P3.7 (Continued )

3.8 For each of the trusses of Figure P3.7, express the connectivity data for each
element in the form of Equation 3.39.

3.9 For each element shown in Figure P3.9, the global displacements have been
calculated as U1 = 0.05 in., U2 = 0.02 in., U3 = 0.075 in., U4 = 0.09 in. Using
the finite element equations, calculate
a. Element axial displacements at each node.
b. Element strain.
c. Element stress.
d. Element nodal forces.
Do the calculated stress values agree with � = F/A? Let A = 0.75 in.2,
E = 10 × 106 psi, L = 40 in. for each case.

(e)

4

53
1 7

62

4
1

2 53

(d)

1

2

4 8

7

9

5

6

3

14

10

12

13 15

11
17

162

3

5

6

1

4 7

8

10

11

9

(c)

12

13

10

11

1 791

2
3

7

4

6

5 8

2

3 6

5

8

4
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Figure P3.9

3.10 The plane truss shown in Figure P3.10 is subjected to a downward vertical load
at node 2. Determine via the direct stiffness method the deflection of node 2 in
the global coordinate system specified and the axial stress in each element. For
both elements, A = 0.5 in.2, E = 30 × 106 psi.

Figure P3.10

3.11 The plane truss shown in Figure P3.11 is composed of members having a square
15 mm × 15 mm cross section and modulus of elasticity E = 69 GPa.
a. Assemble the global stiffness matrix.
b. Compute the nodal displacements in the global coordinate system for the

loads shown.
c. Compute the axial stress in each element.

Figure P3.11

3

2 4

1

3 kN

5 kN

1.5 m

1.5 m

X

1500 lb

(30, �10)

(40, 0)(0, 0)
1

2

3

Y

(c)

U2

U1

U4

U3

110�

(b)

U2

U1

U4

U3

30�

(a)

U2

U1

U4

U3

45�
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3.12 Repeat Problem 3.11 assuming elements 1 and 4 are removed.
3.13 The cantilever truss in Figure P3.13 was constructed by a builder to support a

winch and cable system (not shown) to lift and lower construction materials. The
truss members are nominal 2 × 4 southern yellow pine (actual dimensions
1.75 in. × 3.5 in.; E = 2 × 106 psi). Using the direct stiffness method, calculate
a. The global displacement components of all unconstrained nodes.
b. Axial stress in each member.
c. Reaction forces at constrained nodes.
d. Check the equilibrium conditions.

Figure P3.13

3.14 Figure P3.14 shows a two-member plane truss supported by a linearly elastic
spring. The truss members are of a solid circular cross section having d = 20 mm
and E = 80 GPa. The linear spring has stiffness constant 50 N/mm. 
a. Assemble the system global stiffness matrix and calculate the global

displacements of the unconstrained node.
b. Compute the reaction forces and check the equilibrium conditions.
c. Check the energy balance. Is the strain energy in balance with the

mechanical work of the applied force?

Figure P3.14

15 kN

4 m
k

50�

3 m

Y

X
45�

30� 30�

500 lb

3

4

5
2

1

Node

1

2

3

4

5

X

0

0

96

96

192

(inches)

Y

0

96

96

151.4

96
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3.15 Repeat Problem 3.14 if the spring is removed.
3.16 Owing to a faulty support connection, node 1 in Problem 3.13 moves 0.5 in.

horizontally to the left when the load is applied. Repeat the specified
computations for this condition. Does the solution change? Why or why not?

3.17 Given the following system of algebraic equations






10 −10 0 0
−10 20 −10 0

0 −10 20 −10
0 0 −10 10











x1

x2

x3

x4





=






F1

F2

F3

F4






and the specified conditions 

x1 = 0 x3 = 1.5 F2 = 20 F4 = 35

calculate x2 and x4. Do this by interchanging rows and columns such that x1 and
x3 correspond to the first two rows and use the partitioned matrix approach of
Equation 3.45.

3.18 Given the system






50 −50 0 0
−50 100 −50 0

0 −50 75 −25
0 0 −25 25











U1

U2

U3

U4





=






30
F2

40
40






and the specified condition U2 = 0.5, use the approach specified in Problem 3.17
to solve for U1, U3, U4, and F2.

3.19 For the truss shown in Figure P3.19, solve for the global displacement
components of node 3 and the stress in each element. The elements have cross-
sectional area A = 1.0 in.2 and modulus of elasticity 15 × 106 psi.

Figure P3.19

3.20 Each bar element shown in Figure P3.20 is part of a 3-D truss. The nodal
coordinates (in inches) are specified in a global (X, Y, Z) coordinate system.
Given A = 2 in.2 and E = 30 × 106 psi, calculate the global stiffness matrix of
each element.

72 in.
3

21

4

60�

30� 60�
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Figure P3.20

3.21 Verify Equation 3.59 via direct computation of the matrix product.
3.22 Show that the axial stress in a bar element in a 3-D truss is given by

� = E ε = E

[
dN1

dx

dN2

dx

]{
u (e)

1

u (e)
2

}

= E

[
− 1

L

1

L

]
[R]

{
U (e)

}

and note that the expression is the same as for the 2-D case.
3.23 Determine the axial stress and nodal forces for each bar element shown in

Figure P3.20, given that node 1 is fixed and node 2 has global displacements
U4 = U5 = U6 = 0.06 in.

3.24 Use Equations 3.55 and 3.56 to express strain energy of a bar element in terms of
the global displacements. Apply Castigliano’s first theorem and show that the
resulting global stiffness matrix is identical to that given by Equation 3.58.

3.25 Repeat Problem 3.24 using the principle of minimum potential energy.
3.26 Assemble the global stiffness matrix of the 3-D truss shown in Figure P3.26 and

compute the displacement components of node 4. Also, compute the stress in
each element.

Figure P3.26 Coordinates given in inches. For each
element E = 10 × 106 psi, A = 1.5 in.2.

FY � �1500 lb

X

Y

Z
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1
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3

4

X
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1

2
4

3

0
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Y Z

0

0

0

�20

0
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0
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(0, 0, 0)

(0, �80, 0)2

1

(d)

(0, 80, 0)

(0, 0, 0)1

2

(c)

(30, 30, �20)

(10, 10, 0)

2

1
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1
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